Resistance Exercise in Type 1 Diabetes

      Abstract

      It is relatively well known that moderate-intensity aerobic exercise increases the risk of hypoglycemia in individuals with type 1 diabetes. Conversely, brief high-intensity (anaerobic) activity can cause post-exercise hyperglycemia. Recent evidence has indicated that including small amounts of anaerobic activity, either in the form of short sprints or as resistance exercise (weight lifting), during aerobic exercise sessions may decrease the drop in blood glucose levels associated with moderate-intensity aerobic exercise. This review discusses the recent developments in the area of exercise and type 1 diabetes, with a particular focus on the effects of resistance exercise. Practical exercise recommendations, as well as suggestions for the future direction of research in this area, are also provided.

      Résumé

      Il est relativement bien connu que l’exercice aérobique d’intensité modérée augmente le risque d’hypoglycémie chez les individus ayant le diabète de type 1. Inversement, une séance brève d’activité d’intensité élevée (exercice anaérobique) peut causer une hyperglycémie après exercice. Des données scientifiques récentes ont montré que le fait d’inclure un petit nombre d’activités anaérobiques sous la forme de sprints courts ou d’exercices contre résistance (poids et haltères) durant les séances d’exercice aérobique peut réduire la chute de glycémie associée à l’exercice aérobique d’intensité modérée. Cette revue traite de récents développements dans le domaine de l’exercice et du diabète de type 1, et met l’accent sur les effets de l’exercice contre résistance. Les recommandations pratiques sur l’exercice ainsi que les suggestions concernant l’orientation future de la recherche dans ce domaine sont également fournies.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chimen M.
        • Kennedy A.
        • Nirantharakumar K.
        • et al.
        What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review.
        Diabetologia. 2012; 55: 542-551
        • Plotnikoff R.C.
        • Taylor L.M.
        • Wilson P.M.
        • et al.
        Factors associated with physical activity in Canadian adults with diabetes.
        Med Sci Sports Exerc. 2006; 38: 1526-1534
        • Brazeau A.S.
        • Rabasa-Lhoret R.
        • Strychar I.
        • Mircescu H.
        Barriers to physical activity among patients with type 1 diabetes.
        Diabetes Care. 2008; 31: 2108-2109
        • Guelfi K.J.
        • Jones T.W.
        • Fournier P.A.
        New insights into managing the risk of hypoglycaemia associated with intermittent high-intensity exercise in individuals with type 1 diabetes mellitus: implications for existing guidelines.
        Sports Med. 2007; 37: 937-946
        • Yardley J.E.
        • Kenny G.P.
        • Perkins B.A.
        • et al.
        Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes.
        Diabetes Care. 2012; 35: 669-675
        • Physical Activity Guidelines Advisory Committee
        Physical Activity Guidelines Advisory Committee report, 2008.
        US Department of Health and Human Services, Washington, DC2008
        • Ahlborg G.
        • Felig P.
        • Hagenfeldt L.
        • et al.
        Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids.
        J Clin Invest. 1974; 53: 1080-1090
        • Wasserman D.
        • Davis S.
        • Zinman B.
        Fuel metabolism during exercise in health and diabetes.
        in: Ruderman N. Devlin J. Schneider S. Handbook of exercise in diabetes. American Diabetes Assocation, Alexandria, VA2002: 63-69
        • Felig P.
        • Cherif A.
        • Minagawa A.
        • Wahren J.
        Hypoglycemia during prolonged exercise in normal men.
        N Engl J Med. 1982; 306: 895-900
        • Sigal R.J.
        • Fisher S.
        • Halter J.B.
        • et al.
        The roles of catecholamines in glucoregulation in intense exercise as defined by the islet cell clamp technique.
        Diabetes. 1996; 45: 148-156
        • Kjaer M.
        • Farrell P.A.
        • Christensen N.J.
        • Galbo H.
        Increased epinephrine response and inaccurate glucoregulation in exercising athletes.
        J Appl Physiol. 1986; 61: 1693-1700
        • Calles J.
        • Cunningham J.J.
        • Nelson L.
        • et al.
        Glucose turnover during recovery from intensive exercise.
        Diabetes. 1983; 32: 734-738
        • Marliss E.B.
        • Vranic M.
        Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes.
        Diabetes. 2002; 51: S271-S283
        • Mitchell T.H.
        • Abraham G.
        • Schiffrin A.
        • et al.
        Hyperglycemia after intense exercise in IDDM subjects during continuous subcutaneous insulin infusion.
        Diabetes Care. 1988; 11: 311-317
        • Purdon C.
        • Brousson M.
        • Nyveen S.L.
        • et al.
        The roles of insulin and catecholamines in the glucoregulatory response during intense exercise and early recovery in insulin-dependent diabetic and control subjects.
        J Clin Endocrinol Metab. 1993; 76: 566-573
        • Sigal R.J.
        • Purdon C.
        • Fisher S.J.
        • et al.
        Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects.
        J Clin Endocrinol Metab. 1994; 79: 1049-1057
        • Fahey A.J.
        • Paramalingam N.
        • Davey R.J.
        • et al.
        The effect of a short sprint on postexercise whole-body glucose production and utilization rates in individuals with type 1 diabetes mellitus.
        J Clin Endocrinol Metab. 2012; 97: 4193-4200
        • Iscoe K.E.
        • Riddell M.C.
        Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with type 1 diabetes mellitus.
        Diabet Med. 2011; 28: 824-832
        • Maran A.
        • Pavan P.
        • Bonsembiante B.
        • et al.
        Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes.
        Diabet Tehnol Ther. 2010; 12: 763-768
        • McMahon S.K.
        • Ferreira L.D.
        • Ratnam N.
        • et al.
        Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner.
        J Clin Endocrinol Metab. 2007; 92: 963-968
        • Brooks G.
        • Fahey T.
        • Baldwin K.
        Exercise physiology: human bioenergetics and its applications.
        4th ed. McGraw-Hill, New York2005
        • Kraemer W.J.
        • Ratamess N.A.
        Hormonal responses and adaptations to resistance exercise and training.
        Sports Med. 2005; 35: 339-361
        • Smilios I.
        • Pilianidis T.
        • Karamouzis M.
        • Tokmakidis S.P.
        Hormonal responses after various resistance exercise protocols.
        Med Sci Sports Exerc. 2003; 35: 644-654
        • Pullinen T.
        • Mero A.
        • Huttunen P.
        • et al.
        Resistance exercise-induced hormonal responses in men, women, and pubescent boys.
        Med Sci Sports Exerc. 2002; 34: 806-813
        • French D.N.
        • Kraemer W.J.
        • Volek J.S.
        • et al.
        Anticipatory responses of catecholamines on muscle force production.
        J Appl Physiol. 2007; 102: 94-102
        • Yardley J.E.
        • Kenny G.P.
        • Perkins B.A.
        • et al.
        Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes.
        Diabetes Care. 2013; 36: 537-542
        • Sillanpaa E.
        • Laaksonen D.E.
        • Hakkinen A.
        • et al.
        Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women.
        Eur J Appl Physiol. 2009; 106: 285-296
        • Liu C.J.
        • Latham N.K.
        Progressive resistance strength training for improving physical function in older adults.
        Cochrane Database Syst Rev. 2009; 3: CD002759
        • Lemmer J.T.
        • Ivey F.M.
        • Ryan A.S.
        • et al.
        Effect of strength training on resting metabolic rate and physical activity: age and gender comparisons.
        Med Sci Sports Exerc. 2001; 33: 532-541
        • Bolam K.A.
        • van Uffelen J.G.
        • Taaffe D.R.
        The effect of physical exercise on bone density in middle-aged and older men: a systematic review.
        Osteoporosis Int. 2013; (Epub ahead of print)
        • Donges C.E.
        • Duffield R.
        • Drinkwater E.J.
        Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition.
        Med Sci Sports Exerc. 2010; 42: 304-313
        • Flack K.D.
        • Davy K.P.
        • Hulver M.W.
        • et al.
        Aging, resistance training, and diabetes prevention.
        J Aging Res. 2010; 2011: 127315
        • Cornelissen V.A.
        • Fagard R.H.
        • Coeckelberghs E.
        • Vanhees L.
        Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials.
        Hypertension. 2011; 58: 950-958
        • Kelley G.
        • Kelley K.
        Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials.
        Prev Med. 2009; 48: 9-19
        • Levinger I.
        • Goodman C.
        • Hare D.
        • et al.
        The effect of resistance training on functional capacity and quality of life in individuals with high and low numbers of metabolic risk factors.
        Diabetes Care. 2007; 30: 2205-2210
        • Cassilhas R.
        • Viana V.
        • Grassmann V.
        • et al.
        The impact of resistance exercise on the cognitive function of the elderly.
        Med Sci Sports Exerc. 2007; 39: 1401-1407
        • Moore J.
        • Mitchell N.
        • Bibeau W.
        • Bartholomew J.
        Effects of a 12-week resistance exercise program on physical self-perceptions in college students.
        Res Q Exerc Sport. 2011; 82: 291
        • Durak E.P.
        • Jovanovic-Peterson L.
        • Peterson C.M.
        Randomized crossover study of effect of resistance training on glycemic control, muscular strength, and cholesterol in type I diabetic men.
        Diabetes Care. 1990; 13: 1039-1043
        • Ramalho A.C.
        • de Lourdes Lima M.
        • Nunes F.
        • et al.
        The effect of resistance versus aerobic training on metabolic control in patients with type-1 diabetes mellitus.
        Diabetes Res Clin Pract. 2006; 72: 271-276
        • Peterson C.M.
        • Jones R.L.
        • Dupuis A.
        • et al.
        Feasibility of improved blood glucose control in patients with insulin-dependent diabetes mellitus.
        Diabetes Care. 1979; 2: 329-335
        • Mosher P.E.
        • Nash M.S.
        • Perry A.C.
        • et al.
        Aerobic circuit exercise training: effect on adolescents with well-controlled insulin-dependent diabetes mellitus.
        Arch Phys Med Rehabil. 1998; 79: 652-657
        • D'Hooge R.
        • Hellinckx T.
        • Van Laethem C.
        • et al.
        Influence of combined aerobic and resistance training on metabolic control, cardiovascular fitness and quality of life in adolescents with type 1 diabetes: a randomized controlled trial.
        Clin Rehabil. 2011; 25: 349-359
        • Salem M.A.
        • Aboelasrar M.A.
        • Elbarbary N.S.
        • et al.
        Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial.
        Diabetol Metab Syndr. 2010; 2: 47
        • Yardley J.E.
        • Iscoe K.E.
        • Sigal R.J.
        • et al.
        Insulin pump therapy is associated with less post-exercise hyperglycemia than multiple daily injections: an observational study of physically active type 1 diabetes patients.
        Diabetes Technol Ther. 2013; 15: 84-88
        • Sigal R.
        • Armstrong M.
        • Colby P.
        • et al.
        Canadian Diabetes Association Clinical Practice Guidelines: physical activity and diabetes.
        Can J Diabetes. 2013; 37: S40-S44
        • Deuster P.A.
        • Chrousos G.P.
        • Luger A.
        • et al.
        Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities.
        Metabolism. 1989; 38: 141-148
        • Kenny G.P.
        • Yardley J.E.
        • Martineau L.
        • Jay O.
        Physical work capacity in older adults: implications for the aging worker.
        Am J Ind Med. 2008; 51: 610-625
        • Kraemer W.J.
        • Hakkinen K.
        • Newton R.U.
        • et al.
        Acute hormonal responses to heavy resistance exercise in younger and older men.
        Eur J Appl Physiol Occup Physiol. 1998; 77: 206-211
        • Wideman L.
        • Weltman J.Y.
        • Shah N.
        • et al.
        Effects of gender on exercise-induced growth hormone release.
        J Appl Physiol. 1999; 87: 1154-1162
        • Yardley J.E.
        • Sigal R.J.
        • Kenny G.P.
        • et al.
        Point accuracy of interstitial continuous glucose monitoring during exercise in type 1 diabetes.
        Diabetes Technol Ther. 2013; 15: 46-49