Impact of Patient Use of an Online Patient Portal on Diabetes Outcomes

      Abstract

      Objective

      To assess the effect of patient use of an online patient portal on diabetes outcomes.

      Methods

      Patients included were those with diabetes who were newly referred to a Vancouver-based tertiary care diabetologist between April 2008 and October 2012. Each patient was assessed by the diabetologist, received initial diabetes education and was referred, as necessary, for further education and self-management training. All patients who provided an e-mail address at registration were invited to open an online patient portal account. The portal provided access to diabetes education material, personal laboratory values and a messaging system allowing communication with the diabetologist and staff. Patients who logged in 1 or more times were defined as portal users (n=50); patients who never logged in to the portal were defined as non-users (n=107). A1C was measured at 2 time points: at baseline (i.e. initial, in-clinic visit) and at last follow up (visit no less than 6 months and no more than 2 years after the initial visit). Because usership is self-selected, propensity score matching was used to create comparable user/non-user groups based on available baseline covariates.

      Results

      Compared to non-users, a higher proportion of users achieved A1C ≤7% at follow up (56% vs. 32%) (p=0.031).

      Conclusion

      Accessing an online patient portal is associated with improved glycemic control.

      Résumé

      Objectif

      Évaluer l'effet de l'utilisation par les patients d'un compte d'utilisateur du portail en ligne destiné aux patients sur les résultats liés au diabète.

      Méthodes

      Les patients inclus étaient des diabétiques qui avaient été orientés récemment vers un diabétologue d'un centre de soins tertiaires de Vancouver entre avril 2008 et octobre 2012. Chaque patient était évalué par le diabétologue, recevait un enseignement initial sur le diabète, et était orienté si nécessaire pour poursuivre un enseignement et une formation sur la prise en charge autonome. Tous les patients qui fournissaient une adresse de courriel à l'inscription étaient invités à ouvrir en ligne un compte d'utilisateur du portail destiné aux patients. Le portail donnait l'accès au matériel d’enseignement sur le diabète, aux résultats de laboratoire personnels et au système de messagerie permettant la communication avec le diabétologue et le personnel. Les patients qui se connectaient 1 fois ou plus étaient considérés comme étant des utilisateurs du portail (n = 50); les patients qui ne s'étaient jamais connectés au portail étaient considérés comme étant des non-utilisateurs (n = 107). L'A1c était mesurée à 2 moments précis, soit au début (c.-à-d. à la visite initiale à la clinique) et à la dernière visite du suivi (la visite ne devait pas être de moins de 6 mois et de plus de 2 ans après la visite initiale). Puisque l'utilisation se faisait sur une base volontaire, l'appariement sur le score de propension était utilisé pour créer des groupes comparables d'utilisateurs et de non-utilisateurs basés sur les covariables initiales disponibles.

      Résultats

      Comparativement aux non-utilisateurs, une plus forte proportion d’utilisateurs obtenaient une A1c ≤ 7 % durant le suivi (56 % vs 32 %; valeur p = 0,031).

      Conclusions

      L'accès en ligne à un portail destiné aux patients est associé à l'amélioration de la régulation de la glycémie.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benhamou P.-Y.
        Improving diabetes management with electronic health records and patients’ health records.
        Diabetes Metab. 2011; 37: S53-S56
        • Varroud-Vial M.
        Improving diabetes management with electronic health records.
        Diabetes Metab. 2011; 37: S48-S52
        • Reed M.
        • Huang J.
        • Graetz I.
        • et al.
        Outpatient electronic health records and the clinical care and outcomes of patients with diabetes mellitus.
        Ann Intern Med. 2012; 157: 482-489
        • Pollom R.K.
        • Pollom R.D.
        Utilization of a multidisciplinary team for inpatient diabetes care.
        Crit Care Nurs Q. 2004; 27: 185-188
        • Sarkar U.
        • Karter A.J.
        • Liu J.Y.
        • et al.
        The literacy divide: health literacy and the use of an internet-based patient portal in an integrated health system: results from the diabetes study of Northern California (DISTANCE).
        J Health Commun. 2010; 15: 183-196
        • Sarkar U.
        • Karter A.J.
        • Liu J.Y.
        • et al.
        Social disparities in internet patient portal use in diabetes: evidence that the digital divide extends beyond access.
        J Am Med Inform Assoc. 2011; 18: 318-321
        • Hess R.
        • Bryce C.L.
        • Paone S.
        • et al.
        Exploring challenges and potentials of personal health records in diabetes self-management: implementation and initial assessment.
        Telemed J E Health. 2007; 13: 509-517
        • Ross S.E.
        • Nowels C.T.
        • Haverhals L.M.
        • et al.
        Qualitative assessment of diabetes-STAR: a patient portal with disease management functions.
        AMIA Annu Symp Proc. 2007; 1097
        • Zickmund S.L.
        • Hess R.
        • Bryce C.L.
        • et al.
        Interest in the use of computerized patient portals: role of the provider-patient relationship.
        J Gen Intern Med. 2008; 23: 20-26
        • McMahon G.T.
        • Gomes H.E.
        • Hohne S.H.
        • et al.
        Web-based care management in patients with poorly controlled diabetes.
        Diabetes Care. 2005; 28: 1624-1629
        • Fonda S.J.
        • McMahon G.T.
        • Gomes H.E.
        • et al.
        Changes in diabetes distress related to participation in an Internet-based diabetes care management program and glycemic control.
        J Diabetes Sci Technol. 2009; 3: 117-124
        • Austin P.C.
        An introduction to propensity score methods for reducing the effects of confounding in observational studies.
        Multivar Behav Res. 2001; 46: 399-424
        • Steyerberg E.W.
        Clinical prediction models: a practical approach to development, validation, and updating.
        Springer, New York, NY1992
        • Ho D.
        • Imai K.
        • King Gary
        • et al.
        Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference.
        Polit Anal. 2007; 15 (Accessed January 9, 2014.): 199-236
        • Ho D.
        • Imai K.
        • King G.
        • et al.
        Matchit: nonparametric preprocessing for parametric casual inference.
        J Stat Softw. 2011; 42 (Accessed January 9, 2014.)
        • Bodenheimer T.
        • Lorig K.
        • Holman H.
        • et al.
        Patient self-management of chronic disease in primary care.
        JAMA. 2002; 288: 2469-2475
        • Bodenheimer T.
        • Wagner E.H.
        • Grumbach K.
        Improving primary care for patients with chronic illness: the chronic care model, Part 2.
        JAMA. 2002; 288: 1909-1914
        • King D.K.
        • Glasgow R.E.
        • Toobert D.J.
        • et al.
        Self-efficacy, problem solving, and social-environmental support are associated with diabetes self-management behaviors.
        Diabetes Care. 2010; 33: 751-753
        • Bains S.S.
        • Egede L.E.
        Associations between health literacy, diabetes knowledge, self-care behaviors, and glycemic control in a low income population with type 2 diabetes.
        Diabetes Technol Ther. 2011; 13: 335-341
        • McEwen L.N.
        • Kim C.
        • Ettner S.L.
        • et al.
        Competing demands for time and self-care behaviors, processes of care, and intermediate outcomes among people with diabetes.
        Diabetes Care. 2011; 34: 1180-1182
        • Tao B.
        • Pietropaolo M.
        • Atkinson M.
        • et al.
        estimating the cost of type 1 diabetes in the U.S.: a propensity score matching method.
        PLOS ONE. 2010; 5 (Accessed February 19, 2013): e11501
        • Adamopoulos C.
        • Meyer P.
        • Desai R.V.
        • et al.
        Absence of obesity paradox in patients with chronic heart failure and diabetes mellitus: a propensity-matched study.
        Eur J Heart Fail. 2011; 13: 200-206
        • Linmans J.
        • Spigt M.
        • Deneer L.
        • et al.
        Effect of lifestyle intervention for people with diabetes or prediabetes in real-world primary care: propensity score analysis.
        BMC Fam Pract. 2011; 12: 95
        • Anderson R.M.
        • Funnell M.M.
        • Butler P.M.
        • et al.
        Patient empowerment: results of a randomized controlled trial.
        Diabetes Care. 1995; 18: 943-949
        • van Dam H.A.
        • van der Horst F.
        • van den Borne B.
        • et al.
        Provider-patient interaction in diabetes care: effects on patient self-care and outcomes: a systematic review.
        Patient Educ Couns. 2003; 51: 17-28
        • Rachmani R.
        • Slavacheski I.
        • Berla M.
        • et al.
        Treatment of high-risk patients with diabetes: motivation and teaching intervention: a randomized, prospective 8-year follow-up study.
        J Am Soc Nephrol. 2005; 16: S22-S26