Obesity and Insulin Resistance Screening Tools in American Adolescents: National Health and Nutrition Examination Survey (NHANES) 1999 to 2010

Published:April 18, 2016DOI:https://doi.org/10.1016/j.jcjd.2015.11.009

      Abstract

      Objective

      To identify which feasible obesity and insulin resistance (IR) screening tools are most strongly associated in adolescents by using a nationally representative sample.

      Methods

      Adolescents aged 12.0 to 18.9 years who were participating in the National Health and Nutrition Examination Survey (NHANES) (n=3584) and who were measured for height, weight, waist circumference (WC), triceps and subscapular skinfold thickness, glycated hemoglobin, fasting glucose (FG) and fasting insulin (FI) level were included. Adolescents were split by gender and grouped by body mass index (BMI) percentile. Age- and gender-specific classifications were constructed for each obesity screening tool measure to account for growth and maturation. General linear models were used to establish groups objectively for analysis based on when IR began to increase. Additional general linear models were used to identify when IR significantly increased for each IR measure as obesity group increased and to identify the variance accounted for among each obesity-IR screening tool relationship.

      Results

      As the obesity group increased, homeostasis model assessment-insulin resistance (HOMA-IR) and FI significantly increased, while FG increased only (above the referent) in groups with BMI percentiles ≥95.0, and glycated hemoglobin level did not vary across obesity groups. The most strongly associated screening tools were WC and FI in boys (R2=0.253) and girls (R2=0.257). FI had the strongest association with all of the obesity measures. BMI associations were slightly weaker than WC in each in relation to IR.

      Conclusions

      Our findings show that WC and FI are the most strongly associated obesity and IR screening tool measures in adolescents. These feasible screening tools should be utilized in screening practices for at-risk adolescents.

      Résumé

      Objectif

      Déterminer quels sont les outils de dépistage de l'obésité et de l'insulinorésistance (IR) réalisables les plus fortement associés aux adolescents en utilisant un échantillon représentatif à l'échelle nationale.

      Méthodes

      Nous avons inclus les adolescents âgés de 12,0 à 18,9 ans qui participaient à l'enquête NHANES (National Health and Nutrition Examination Survey) (n=3584) et dont la taille, le poids, le tour de taille (TT), les triceps et l'épaisseur du pli cutané sous-scapulaire, les taux d'hémoglobine glyquée, de glycémie à jeun (GJ) et d'insuline à jeun (IJ) avaient été mesurés. Nous avons ventilé les adolescents selon le sexe et le percentile de l'indice de masse corporelle (IMC). Nous avons élaboré les classifications selon l'âge et le genre pour chacune des mesures de dépistage de l'obésité afin de tenir compte de la croissance et de la maturation. Nous avons utilisé des modèles linéaires généraux pour établir objectivement les groupes pour l'analyse au moment où l'IR commençait à augmenter. Nous avons utilisé des modèles linéaires généraux complémentaires pour déterminer le moment où l'IR augmentait de manière significative pour chaque mesure de l'IR à mesure que le groupe d'adolescents obèses augmentait et pour déterminer la variance de chaque relation de l'outil de dépistage de l'IR liée à l'obésité.

      Résultats

      À mesure que le groupe d'adolescents obèses augmentait, l'évaluation du modèle d'homéostasie de l'insulinorésistance et l'IJ augmentaient de manière significative, alors que la GJ augmentait seulement (au-dessus du groupe de référence) dans les groupes dont les percentiles de l'IMC étaient ≥95,0, mais le taux d'hémoglobine glyquée ne variait pas entre les groupes d'adolescents obèses. Les outils de dépistage les plus fortement associés étaient le TT et l'IJ chez les garçons (R2=0,253) et les filles (R2=0,257). L'IJ montrait l'association la plus forte avec toutes les mesures de l'obésité. Les associations de l'IMC étaient légèrement plus faibles que le TT pour chacune par rapport à l'IR.

      Conclusions

      Nos conclusions montrent que le TT et l'IJ sont les mesures de dépistage de l'obésité et de l'IR chez les adolescents les plus fortement associées. Ces outils de dépistage réalisables devraient être utilisés dans les pratiques de dépistage chez les adolescents exposés au risque.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gortmaker S.L.
        • Dietz Jr, W.H.
        • Sobol A.M.
        • Wehler C.A.
        Increasing pediatric obesity in the United States.
        Am J Dis Child. 1987; 141: 535-540
        • Kahn S.E.
        The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes.
        Diabetologia. 2003; 46: 3-19
        • Pinhas-Hamiel O.
        • Dolan L.M.
        • Daniels S.R.
        • et al.
        Increased incidence of non-insulin-dependent diabetes mellitus among adolescents.
        J Pediatr. 1996; 128: 608-615
        • Narasimhan S.
        • Weinstock R.S.
        Youth-onset type 2 diabetes mellitus: Lessons learned from the TODAY study.
        Mayo Clin Proc. 2014; 89: 806-816
        • Thorsdottir I.
        • Gunnarsdottir I.
        • Palsson G.I.
        • Johannsson E.
        Anthropometric predictors of serum fasting insulin in 9- and 15-year-old children and adolescents.
        Nutr Metab Cardiovasc Dis. 2006; 16: 263-271
        • Manios Y.
        • Kourlaba G.
        • Kafatos A.
        • et al.
        Associations of several anthropometric indices with insulin resistance in children: The Children Study.
        Acta Paediatr. 2008; 97: 494-499
        • Kotlyarevska K.
        • Wolfgram P.
        • Lee J.M.
        Is waist circumference a better predictor of insulin resistance than body mass index in U.S. adolescents?.
        J Adolesc Health. 2011; 49: 330-333
        • Singh B.
        • Saxena A.
        Surrogate markers of insulin resistance: A review.
        World J Diabetes. 2010; 1: 36-47
        • Schianca G.P.C.
        • Rossi A.
        • Sainaghi P.P.
        • et al.
        The significance of impaired fasting glucose versus impaired glucose tolerance: Importance of insulin secretion and resistance.
        Diabetes Care. 2003; 26: 1333-1337
        • Wallace T.M.
        • Levy J.C.
        • Matthews D.R.
        Use and abuse of HOMA modeling.
        Diabetes Care. 2004; 27: 1487-1495
        • Muniyappa R.
        • Lee S.
        • Chen H.
        • Quon M.J.
        Current approaches for assessing insulin sensitivity and resistance in vivo: Advantages, limitations, and appropriate usage.
        Am J Physiol Endocrinol Metab. 2008; 294: E15-26
        • Bonora E.
        • Tuomilehto J.
        The pros and cons of diagnosing diabetes with A1C.
        Diabetes Care. 2011; 34: S184-90
        • Galhardo J.
        • Shield J.
        The role of haemoglobin A1C in screening obese children and adolescents for glucose intolerance and type 2 diabetes.
        Acta Med Port. 2015; 28: 307-315
        • Elbassuoni E.
        Better association of waist circumference with insulin resistance and some cardiovascular risk factors than body mass index.
        Endocr Regul. 2013; 47: 3-14
        • Mamtani M.
        • Kulkarni H.
        • Dyer T.D.
        • et al.
        Waist circumference independently associates with the risk of insulin resistance and type 2 diabetes in Mexican American families.
        PLoS ONE. 2013; 8: e59153
        • Khunti K.
        • Taub N.
        • Tringham J.
        • et al.
        Screening for the metabolic syndrome using simple anthropometric measurements in south Asian and white Europeans: A population-based screening study. The Leicester Ethnic Atherosclerosis and Diabetes Risk (LEADER) Study.
        Prim Care Diabetes. 2010; 4: 25-32
        • Balkau B.
        • Sapinho D.
        • Petrella A.
        • et al.
        Prescreening tools for diabetes and obesity-associated dyslipidaemia: Comparing BMI, waist and waist hip ratio; The D.E.S.I.R. Study.
        Eur J Clin Nutr. 2005; 60: 295-304
        • Bindler R.J.
        • Bindler R.C.
        • Daratha K.B.
        Biological correlates and predictors of insulin resistance among early adolescents.
        J Pediatr Nurs. 2013; 28: 20-27
        • Jiménez-Pavón D.
        • Castillo M.J.
        • Moreno L.A.
        • et al.
        Fitness and fatness are independently associated with markers of insulin resistance in European adolescents; the HELENA study.
        Int J Pediatr Obes. 2011; 6: 253-260
        • Misra A.
        • Madhavan M.
        • Vikram N.K.
        • et al.
        Simple anthropometric measures identify fasting hyperinsulinemia and clustering of cardiovascular risk factors in Asian Indian adolescents.
        Metab Clin Exp. 2006; 55: 1569-1573
        • Kondaki K.
        • Grammatikaki E.
        • Pavón D.J.
        • et al.
        Comparison of several anthropometric indices with insulin resistance proxy measures among European adolescents: The Helena Study.
        Eur J Pediatr. 2011; 170: 731-739
        • Lee J.M.
        • Okumura M.J.
        • Davis M.M.
        • et al.
        Prevalence and determinants of insulin resistance among U.S. adolescents: A population-based study.
        Diabetes Care. 2006; 29: 2427-2432
      1. National Health and Nutrition Examination Survey (NHANES): Anthropometry Procedures Manual.
        (Published January 2011; Accessed June 1, 2015)
        • Addo O.Y.
        • Himes J.H.
        Reference curves for triceps and subscapular skinfold thicknesses in US children and adolescents.
        Am J Clin Nutr. 2010; 91: 635-642
        • Kuczmarski R.J.
        • Ogden C.L.
        • Guo S.S.
        • et al.
        2000 CDC Growth charts for the United States: Methods and development.
        Vital Health Stat 11. 2002; : 1-190
        • Cook S.
        • Auinger P.
        • Huang T.T.-K.
        Growth curves for cardio-metabolic risk factors in children and adolescents.
        J Pediatr. 2009; 155: e15-26
        • Gungor N.
        • Saad R.
        • Janosky J.
        • Arslanian S.
        Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents.
        J Pediatr. 2004; 144: 47-55
      2. National Health and Nutrition Examination Survey (NHANES): Laboratory Procedures Manual.
        (Published July 2009; Accessed June 1, 2015)
        • Reinehr T.
        • Wunsch R.
        Relationships between cardiovascular risk profile, ultrasonographic measurement of intra-abdominal adipose tissue, and waist circumference in obese children.
        Clin Nutr. 2010; 29: 24-30
        • Watts K.
        • Bell L.M.
        • Byrne S.M.
        • et al.
        Waist circumference predicts cardiovascular risk in young Australian children.
        J Paediatr Child Health. 2008; 44: 709-715
        • Ali O.
        • Cerjak D.
        • Kent Jr, J.W.
        • et al.
        Obesity, central adiposity and cardiometabolic risk factors in children and adolescents: A family-based study.
        Pediatr Obes. 2014; 9: e58-62
        • Al-Daghri N.M.
        • Al-Attas O.S.
        • Alokail M.
        • et al.
        Does visceral adiposity index signify early metabolic risk in children and adolescents? Association with insulin resistance, adipokines, and subclinical inflammation.
        Pediatr Res. 2014; 75: 459-463
        • Kaur J.
        A comprehensive review on metabolic syndrome.
        Cardiol Res Pract. 2014; 2014 (943162)
        • Nielsen S.
        • Guo Z.
        • Johnson C.M.
        • et al.
        Splanchnic lipolysis in human obesity.
        J Clin Invest. 2004; 113: 1582-1588
        • Ruiz J.R.
        • Rizzo N.S.
        • Ortega F.B.
        • et al.
        Markers of insulin resistance are associated with fatness and fitness in school-aged children: The European Youth Heart Study.
        Diabetologia. 2007; 50: 1401-1408
        • Lipska K.J.
        • Inzucchi S.E.
        • Van Ness P.H.
        • et al.
        Elevated HbA1c and fasting plasma glucose in predicting diabetes incidence among older adults: Are two better than one?.
        Diabetes Care. 2013; 36: 3923-3929
        • Zhang X.
        • Gregg E.W.
        • Williamson D.F.
        • et al.
        A1C level and future risk of diabetes: A systematic review.
        Diabetes Care. 2010; 33: 1665-1673
        • Buse J.B.
        • Kaufman F.R.
        • Linder B.
        • et al.
        Diabetes screening with hemoglobin A1c versus fasting plasma glucose in a multiethnic middle-school cohort.
        Diabetes Care. 2013; 36: 429-435
        • Rodden A.M.
        • Diaz V.A.
        • Mainous 3rd, A.G.
        • et al.
        Insulin resistance in adolescents.
        J Pediatr. 2007; 151: 275-279
        • American Diabetes Association
        Standards of medical care in diabetes, 2014.
        Diabetes Care. 2014; 37: S14-80