Advertisement

Association of the CETP Taq1B and LIPG Thr111Ile Polymorphisms with Glycated Hemoglobin and Blood Lipids in Newly Diagnosed Hyperlipidemic Patients

Published:August 30, 2016DOI:https://doi.org/10.1016/j.jcjd.2016.01.002

      Abstract

      Objective

      To examine the association of 2 common polymorphisms in high-density lipoprotein (HDL)-related genes, namely, cholesterol ester transfer protein CETP Taq1B (rs708272) and endothelial lipase LIPG Thr111Ile (rs2000813), with glycated hemoglobin (A1C), blood lipid levels and the risk for type 2 diabetes in a group of hyperlipidemic patients from northern Greece.

      Methods

      We categorized 175 patients with hyperlipidemia into 2 subgroups according to the presence or absence of type 2 diabetes, defined as a recent diagnosis, A1C >6.5% and/or fasting glucose >126 mg/dL. Genotypes for the 2 polymorphisms studied were determined by polymerase chain reaction-restriction fragment length polymorphism. Both polymorphisms were analyzed by multivariate and univariate analyses of baseline A1C levels and plasma lipids. The genotype and allele frequencies of the 2 subgroups were compared.

      Results

      The CETP Taq1B polymorphism was associated with HDL-cholesterol (HDL-C) and A1C levels, but this association was affected by type 2 diabetes; the association with A1C levels was significant only in type 2 diabetes (p=0.005), whereas the association with HDL-C occurred only in the subgroup without type 2 diabetes (p<0.001). LIPG Thr111Ile did not affect plasma HDL-C or A1C levels independently but appeared to modulate their association with CETP Taq1B, and LIPG 111IleIle homozygotes tended to be present at a higher frequency in the hyperlipidemic patients with type 2 diabetes compared to the hyperlipidemic patients without type 2 diabetes (p=0.056).

      Conclusions

      In hyperlipidemic patients, apart from its known association with HDL-C, CETP Taq1B is also associated with A1C levels, and both associations are modified by type 2 diabetes and LIPG Thr111Ile.

      Résumé

      Objectif

      Examiner l'association entre 2 polymorphismes communs dans les gènes liés au cholestérol à lipoprotéines de haute densité (HDL), à savoir, le Taq1B de la protéine de transfert des esters de cholestérol, CETP (rs708272) et le Thr111Ile de la lipase endothéliale, LIPG (rs2000813), et les concentrations sanguines de l'hémoglobine glyquée (A1c) et des lipides, et le risque de diabète de type 2 chez un groupe de patients hyperlipidémiques du nord de la Grèce.

      Méthodes

      Nous avons réparti 175 patients atteints d'hyperlipidémie en 2 sous-groupes selon la présence ou l'absence de diabète de type 2, défini par un diagnostic récent, d'une A1c>6,5 % et/ou d'une glycémie à jeun>126 mg/dl. Nous avons déterminé les génotypes des 2 polymorphismes étudiés par la technique de réaction en chaîne de la polymérase–polymorphisme de longueur des fragments de restriction. Nous avons analysé les 2 polymorphismes au moyen d'analyses multivariées et univariées des concentrations initiales d'A1c et des lipides plasmatiques. Nous avons comparé les fréquences des génotypes et des allèles des 2 sous-groupes.

      Résultats

      Le polymorphisme Taq1B de la CETP était associé aux concentrations de cholestérol HDL (HDL-C) et d'A1c, mais cette association était affectée par le diabète de type 2; l'association avec les concentrations d'A1c était seulement significative lors de diabète de type 2 (p=0,005), alors que l'association avec le HDL-C apparaissait seulement chez le sous-groupe atteint du diabète de type 2 (p<0,001). Le Thr111Ile de la LIPG n'affectait pas les concentrations plasmatiques du HDL-C ou de l'A1c de façon indépendante, mais semblait moduler leur association avec le Taq1B de la CEPT, et les homozygotes 111IleIle de la LIPG avaient tendance à être présents selon une fréquence plus élevée chez les patients hyperlipidémiques atteints du diabète de type 2 comparativement aux patients hyperlipidémiques non atteints du diabète de type 2 (p=0,056).

      Conclusions

      Chez les patients hyperlipidémiques, le Taq1B de la CETP, excepté son association connue avec le HDL-C, est également associé aux concentrations d'A1c, mais les deux associations sont modifiées par le diabète de type 2 et le Thr111Ile de la LIPG.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Taskinen M.R.
        • Borén J.
        New insights into the pathophysiology of dyslipidemia in type 2 diabetes.
        Atherosclerosis. 2015; 239: 483-495
        • Sandhofer A.
        • Tatarczyk T.
        • Laimer M.
        • et al.
        The Taq1B-variant in the cholesteryl ester transfer protein gene and the risk of metabolic syndrome.
        Obesity. 2008; 16: 912-922
        • López-Ríos L.
        • Nóvoa F.J.
        • Chirino R.
        • et al.
        Interaction between cholesteryl ester transfer protein and hepatic lipase encoding genes and the risk of type 2 diabetes: Results from the Telde study.
        PLoS ONE. 2011; 6: e27208
        • Isaacs A.
        • Aulchenko Y.S.
        • Hofman A.
        • et al.
        Epistatic effect of cholesteryl ester transfer protein and hepatic lipase on serum high-density lipoprotein cholesterol levels.
        J Clin Endocrinol Metab. 2007; 92: 2680-2687
        • van Acker B.A.
        • Botma G.J.
        • Zwinderman A.H.
        • et al.
        High HDL cholesterol does not protect against coronary artery disease when associated with combined cholesteryl ester transfer protein and hepatic lipase gene variants.
        Atherosclerosis. 2008; 200: 161-167
        • Soyal S.M.
        • Sandhofer A.
        • Hahne P.
        • et al.
        Cholesteryl ester transfer protein and hepatic lipase gene polymorphisms: Effects on hepatic mRNA levels, plasma lipids and carotid atherosclerosis.
        Atherosclerosis. 2011; 216: 374-380
        • Yasuda T.
        • Ishida T.
        • Rader D.J.
        Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis.
        Circ J. 2010; 74: 2263-2270
        • Razzaghi H.
        • Tempczyk-Russell A.
        • Haubold K.
        • et al.
        Genetic and structure-function studies of missense mutations in human endothelial lipase.
        PLoS ONE. 2013; 8: e55716
        • Durlach V.
        • Durlach A.
        • Movesayan I.
        • et al.
        Association of endothelial lipase Thr111Ile polymorphism with lipid metabolism and microvascular complications in type 2 diabetic patients.
        Diabetes Metab. 2011; 37: 64-71
        • Arndt C.
        • Leclercq I.
        • Nazeyrollas P.
        • et al.
        Association of endothelial lipase Thr111Ile polymorphism with proliferative retinopathy in type 2 diabetes patients.
        Diabetes Metab. 2014; 40: 452-458
        • Annema W.
        • Tietge U.J.
        Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport.
        Curr Atheroscler Rep. 2011; 13: 257-265
        • Shiu S.W.
        • Zhou H.
        • Wong Y.
        • Tan K.C.
        Endothelial lipase and reverse cholesterol transport in type 2 diabetes mellitus.
        J Diabetes Investig. 2010; 1: 111-116
        • Cuchel M.
        • Wolfe M.L.
        • deLemos A.S.
        • Rader D.J.
        The frequency of the cholesteryl ester transfer protein-TaqI B2 allele is lower in African Americans than in Caucasians.
        Atherosclerosis. 2002; 163: 169-174
        • deLemos A.S.
        • Wolfe M.L.
        • Long C.J.
        • et al.
        Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol.
        Circulation. 2002; 106: 1321-1326
        • Boes E.
        • Coassin S.
        • Kollerits B.
        • et al.
        Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: A systematic in-depth review.
        Exp Gerontol. 2009; 44: 136-160
        • Dullaart R.P.
        • Sluiter W.J.
        Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: An updated analysis.
        Pharmacogenomics. 2008; 9: 747-763
        • Fidani L.
        • Hatzitolios A.I.
        • Goulas A.
        • et al.
        Cholesteryl ester transfer protein TaqI B and lipoprotein lipase Ser447Ter gene polymorphisms are not associated with ischaemic stroke in Greek patients.
        Neurosci Lett. 2005; 384: 102-105
        • Khetarpal S.A.
        • Edmondson A.C.
        • Raghavan A.
        • et al.
        Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol.
        PLoS Genet. 2011; 7: e1002393
        • Vohl M.C.
        • Lamarche B.
        • Pascot A.
        • et al.
        Contribution of the cholesteryl ester transfer protein gene TaqIB polymorphism to the reduced plasma HDL-cholesterol levels found in abdominal obese men with the features of the insulin resistance syndrome.
        Int J Obes Relat Metab Disord. 1999; 23: 918-925
        • Russo G.T.
        • Horvath K.V.
        • Di Benedetto A.
        • et al.
        Influence of menopause and cholesteryl ester transfer protein (CETP) TaqIB polymorphism on lipid profile and HDL subpopulations distribution in women with and without type 2 diabetes.
        Atherosclerosis. 2010; 210: 294-301
        • Heilbronn L.K.
        • Noakes M.
        • Clifton P.M.
        Association between HDL-cholesterol and the Taq1B polymorphism in the cholesterol ester transfer protein gene in obese women.
        Atherosclerosis. 2002; 162: 419-424
        • Siebel A.L.
        • Heywood S.E.
        • Kingwell B.A.
        HDL and glucose metabolism: Current evidence and therapeutic potential.
        Front Pharmacol. 2015; 6: 258
        • Li T.Y.
        • Zhang C.
        • Asselbergs F.W.
        • et al.
        Interaction between dietary fat intake and the cholesterol ester transfer protein TaqIB polymorphism in relation to HDL-cholesterol concentrations among US diabetic men.
        Am J Clin Nutr. 2007; 86: 1524-1529
        • Porchay-Baldérelli I.
        • Péan F.
        • Bellili N.
        • et al.
        The CETP TaqIB polymorphism is associated with the risk of sudden death in type 2 diabetic patients.
        Diabetes Care. 2007; 30: 2863-2867
        • Li N.
        • van der Sijde M.R.
        • et al.
        • LifeLines Cohort Study Group
        Pleiotropic effects of lipid genes on plasma glucose, HbA1c, and HOMA-IR levels.
        Diabetes. 2014; 63: 3149-3158
        • Cai G.
        • Huang Z.
        • Zhang B.
        • et al.
        The associations between endothelial lipase 584C/T polymorphism and HDL-C level and coronary heart disease susceptibility: A meta-analysis.
        Lipids Health Dis. 2014; 13: 85
        • Miksztowicz V.
        • Schreier L.
        • McCoy M.
        • et al.
        Role of SN1 lipases on plasma lipids in metabolic syndrome and obesity.
        Arterioscler Thromb Vasc Biol. 2014; 34: 669-675
        • Broedl U.C.
        • Jin W.
        • Rader D.J.
        Endothelial lipase: A modulator of lipoprotein metabolism upregulated by inflammation.
        Trends Cardiovasc Med. 2004; 14: 202-206
        • Shafat I.
        • Ilan N.
        • Zoabi S.
        • et al.
        Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels.
        PLoS ONE. 2011; 6: e17312
        • Wang F.
        • Wan A.
        • Rodrigues B.
        The function of heparanase in diabetes and its complications.
        Can J Diabetes. 2013; 37: 332-338
        • Robert J.
        • Lehner M.
        • Frank S.
        • et al.
        Interleukin 6 stimulates endothelial binding and transport of high-density lipoprotein through induction of endothelial lipase.
        Arterioscler Thromb Vasc Biol. 2013; 33: 2699-2706
        • Tsompanidi E.M.
        • Brinkmeier M.S.
        • Fotiadou E.H.
        • et al.
        HDL biogenesis and functions: Role of HDL quality and quantity in atherosclerosis.
        Atherosclerosis. 2010; 208: 3-9