Advertisement

Comparison of Glycated Hemoglobin Results Based on At-Home and In-Lab Dried Blood Spot Sampling to Routine Venous Blood Sampling In-Lab in Adult Patients With Type 1 or Type 2 Diabetes

Published:December 25, 2017DOI:https://doi.org/10.1016/j.jcjd.2017.10.053

      Abstract

      Objectives

      Regular measurement of glycated hemoglobin (A1C) is logistically demanding. Home blotter-paper collection offers an alternative. This study tested the viability of at-home blotter-paper A1C measurement.

      Methods

      Objective: compare accuracy of A1C levels collected on blotter paper at home (home-blotter) and blotter-paper collection in laboratory (lab-blotter) with venous A1C (routine measurement). Agreement was assessed by Pearson correlation, Lin concordance correlation coefficient (CCC), positive and negative predictive values (PPVs, NPVs) and Bland-Altman plots and associated statistics.

      Results

      Home-blotter, lab-blotter and venous A1C correlated strongly (0.93, 0.93). Home- and lab-blotter results were upwardly biased (0.387%, 0.1%). Bias increased with time. Bias correction provided agreement for both blotters (CCC >0.9); blotters correctly identifying levels above 7% (53 mmol/mol) were 100% for corrected home-blotters and 87% (95% confidence interval) for corrected lab-blotters. NPVs (% blotters correctly identifying levels of 7% or lower [53 mmol/mol]) were 100% for corrected home-blotters and 83% for corrected lab-blotters. After correction, >92% of corrected blotters had errors of 8% or less. Of our subjects, 88.5% found home sampling preferable to routine laboratory sampling.

      Conclusions

      Home-blotter collection is an alternative to routine collection.

      Résumé

      Objectifs

      La mesure régulière de l’hémoglobine glyquée (A1c) est astreignante sur le plan logistique. Le prélèvement sur papier buvard à domicile s’avère une solution de rechange. La présente étude permet de tester la viabilité des mesures de l’A1c sur papier buvard à domicile.

      Méthodes

      L’objectif était de comparer l’exactitude des prélèvements de l’A1c sur papier buvard à domicile (buvard-domicile) et du prélèvement sur papier buvard en laboratoire (buvard-laboratoire) au prélèvement veineux de l’A1c (mesures systématiques). Le coefficient de corrélation de Pearson, le coefficient de concordance (CC) de Lin, les valeurs prédictives positives et négatives (VPP et VPN), le graphique de Bland-Atman et les statistiques associées ont permis d’évaluer la concordance.

      Résultats

      Il existe une forte corrélation entre le buvard-domicile, le buvard-laboratoire et le prélèvement veineux de l’A1c (0,93; 0,93). Les résultats des buvards-domicile et des buvards-laboratoire étaient légèrement biaisés à la hausse (0,387 %, 0,1 %). Les biais augmentaient au fil du temps. La correction des biais offrait une concordance pour les deux types de prélèvements sur buvard (CC > 0,9) : les buvards permettant de bien détecter les concentrations supérieures à 7 % (53 mmol/mol) étaient de 100 % pour les buvards-domicile corrigés et de 87 % (IC à 95 %) pour les buvards-laboratoire corrigés. Les VPN (% des buvards permettant de bien détecter les concentrations de 7 % ou moins [53 mmol/mol]) étaient de 100 % pour les buvards-domicile corrigés et de 83 % pour les buvards-laboratoire corrigés. Après la correction, > 92 % des buvards corrigés montraient des erreurs de 8 % ou moins. Parmi les sujets, 88,5 % trouvaient préférables les prélèvements d’échantillons à domicile aux prélèvements d’échantillons systématiques en laboratoire.

      Conclusions

      Le prélèvement buvard-domicile s’avère une solution de rechange au prélèvement systématique.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berard L.D.
        • Blumer I.
        • Houlden R.
        • et al.
        Monitoring glycemic control.
        Can J Diabetes. 2013; 37: S304-S305
        • Public Health Agency of Canada
        Diabetes in Canada: Facts and figures from a public health perspective.
        (Ottawa)2011
        • Mallow J.A.
        • Theeke L.A.
        • Barnes E.R.
        • et al.
        Free care is not enough: Barriers to attending free clinic visits in a sample of uninsured individuals with diabetes.
        Open J Nurs. 2014; 413: 912
        • Moore S.L.
        • Fischer H.H.
        • Steele A.W.
        • et al.
        A mobile health infrastructure to support underserved patients with chronic disease.
        Healthcare. 2014; 21: 63-68
        • Campos C.
        Addressing cultural barriers to the successful use of insulin in Hispanics with type 2 diabetes.
        South Med J. 2007; 1008: 812
        • Lenters-Westra E.
        • Slingerland R.J.
        Six of eight hemoglobin A1C point-of-care instruments do not meet the general accepted analytical performance criteria.
        Clin Chem. 2010; 561: 44-52
        • Lenters-Westra E.
        • Slingerland R.J.
        Three of 7 hemoglobin A1C point-of-care instruments do not meet generally accepted analytical performance criteria.
        Clin Chem. 2014; 608: 1062-1072
        • Menéndez-Valladares P.
        • Fernández-Riejos P.
        • Sánchez-Mora C.
        • et al.
        Evaluation of a HbA1C point-of-care analyzer.
        Clin Biochem. 2015; 4810: 686-689
        • Sangha J.
        • Pfaltzgraff L.R.
        • Chaturvedi S.
        • Ali S.M.
        Evaluation of hemochek dried blood spot specimen collection system for analysis of hemoglobin A1C.
        Diabetes. 1999; 485: 111-114
        • Fokkema M.R.
        • Bakker A.J.
        • deBoer F.
        • et al.
        HbA1C measurements from dried blood spots: Validation and patient satisfaction.
        Clin Chem Lab Med. 2009; 4710: 1259-1264
        • Mastronardi C.A.
        • Whittle B.
        • Tunningley R.
        • et al.
        The use of dried blood spot sampling for the measurement of HbA1C: A cross-sectional study.
        BMC Clin Pathol. 2015; 151: 1
        • Vogel P.
        • Braun H.P.
        • Berger D.
        • Werner W.
        Device for separating plasma or serum from whole blood and analyzing the same.
        (US patent; #4,816,224)1989
        • Ray R.
        • Ray R.A.
        Diagnostic assay system.
        (US patent application; #09/929,751)2001
        • Egier D.A.
        • Keys J.L.
        • Hall S.K.
        • McQueen M.J.
        Measurement of hemoglobin A1C from filter papers for population-based studies.
        Clin Chem. 2001; 574: 577-585
        • Affan E.T.
        • Praveen D.
        • Chow C.K.
        • Neal B.C.
        Comparability of HbA1C and lipids measured with dried blood spot versus venous samples: A systematic review and meta-analysis.
        BMC Clin Pathol. 2014; 141: 1
        • Tabatabaei-Malazy O.
        • Heshmat R.
        • Omidfar O.
        • et al.
        Glycated hemoglobin measurements from dried blood spots: Reliability and relation to results obtained from whole blood samples.
        J Diabetes Metabol Disord. 2011; 10: 13
        • Crimmins E.
        • Kim J.K.
        • McCreath H.
        • et al.
        Validation of blood-based assays using dried blood spots for use in large population studies.
        Biodemography Soc Biol. 2014; 601: 38-48
        • Lin LI.-K.
        A concordance correlation coefficient to evaluate reproducibility.
        Biometrics. 1989; 45: 255-268
        • Bland J.M.
        • Altman D.
        Statistical methods for assessing agreement between two methods of clinical measurement.
        Lancet. 1998; 3278476: 307-310
        • Sakhi A.K.
        • Bastani N.E.
        • Ellingjord-Dale M.
        • et al.
        Feasibilityof self-sampled dried blood spot and saliva samples sent by mail in a population-based study.
        BMC Cancer. 2015; 151: 1
        • Goldstein D.E.
        • Peth S.B.
        • England J.D.
        • et al.
        Effects of acute changes in blood glucose on HbA1C.
        Diabetes. 1980; 29: 623-628
        • Little R.R.
        Performance of hemoglobin A1C assay methods: Good enough?.
        Clin Chem. 2014; 608: 1031-1033
        • Beeso J.
        • Wong N.
        • Ayling R.
        • et al.
        Screening for hypercholesterolaemia in 10,000 neonates in a multi-ethnic population.
        Eur J Pediatr. 1999; 158: 833-837
        • Martin R.M.
        • Patel R.
        • Zinovik A.
        • et al.
        Filter paper blood spot enzyme linked immunoassay for insulin and application in the evaluation of determinants of child insulin resistance.
        PLoS ONE. 2012; 7: e46752https://doi.org/10.1371/journal.pone.0046752
        • Abraham R.A.
        • Kapil U.
        • Aggarwal S.K.
        • et al.
        Measurement of creatinine from dried blood spot by enzymatic method.
        Int J Adv Res Chem Sci. 2015; 212: 42-46