In Vivo Type 2 Diabetes and Wound-Healing Effects of Antioxidant Gold Nanoparticles Synthesized Using the Insulin Plant Chamaecostus cuspidatus in Albino Rats



      Gold nanoparticles are known for their many applications in the fields of therapeutics and diagnosis.


      This article focuses mainly on the green method of synthesizing gold nanoparticles by using the leaf powder extract of the insulin plant Chamaecostus cuspidatus and on the characterization of developed plant-mediated synthesis of gold nanoparticles. Furthermore, we investigated the free-radical scavenging activity of green-synthesized gold nanoparticles.


      The free radicals were exhibited in a dose-dependent manner. The 50% inhibition of free radicals by gold nanoparticles showed that it was similar to that of the standard inhibition. Toxicity studies generally examine changes in blood serum chemistry and cell populations in tissue morphology through histologic analysis without inducing any lethal effects in the mouse model, thereby accomplishing sustained control over the progression of diabetes mellitus, which plays a leading role in vascular complications in patients. The treatment by gold nanoparticles of the mice with diabetes for a period of 21 days restored their blood glucose, glycogen and insulin levels.


      The use of gold nanoparticles as antidiabetes materials has been achieved. Further studies are required before gold nanoparticle–based drugs are more widely used.



      Les nanoparticules d'or sont connues pour leurs nombreuses applications dans les domaines de la thérapeutique et du diagnostic.


      Le présent article porte principalement sur la méthode de synthèse verte des nanoparticules d'or à partir de la poudre d'extrait de feuilles de la plante d'insuline Chamaecostus cuspidatus et sur la caractérisation de la synthèse médiée par la plante des nanoparticules d'or. De plus, nous avons examiné l'activité de piégeage des radicaux libres des nanoparticules d'or synthétisées par la méthode verte.


      Les radicaux libres ont été exposés de façon proportionnelle à la dose. L'inhibition de 50 % des radicaux libres par les nanoparticules d'or a montré un résultat similaire avec l'inhibition habituelle. Les études sur la toxicité visent généralement à examiner les modifications de la chimie du sérum sanguin et les populations cellulaires dans la morphologie tissulaire par l'étude histologique sans réduire les effets létaux dans le modèle de souris, mais pour maîtriser de manière prolongée l'évolution du diabète sucré, qui joue un rôle prépondérant dans la survenue des complications vasculaires chez les patients. Le traitement des souris diabétiques par nanoparticules d'or durant 21 jours rétablit leurs concentrations de glucose dans le sang, en glycogène et d'insuline.


      L'utilisation des nanoparticules d'or comme matériaux antidiabétiques a été démontrée; les médicaments à base de nanoparticules d'or seront davantage utilisés s'ils font l'objet d'autres études.


      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Halperin A.
        Polymeric micelles: A star model.
        Macromolecules. 1987; 20: 2943-2946
        • Lammers T.
        Smart drug delivery systems: back to the future vs. clinical reality.
        Int J Pharm. 2013; 454: 527-529
        • Davis M.E.
        • Chen Z.
        • Shin D.M.
        Nanoparticle therapeutics: an emerging treatment modality for cancer.
        Nat Rev Drug Discov. 2008; 7: 771-782
        • Sengupta S.
        • Kulkarni A.
        Design principles for clinical efficacy of cancer nanomedicine: A look into the basics.
        ACS Nano. 2013; 7: 2878-2882
        • Wagner V.
        • Dullaart A.
        • Bock A.K.
        • Zweck A.
        The emerging nanomedicine landscape.
        Nat Biotechnol. 2006; 24: 1211-1217
        • Zinatloo-Ajabshir S.
        • Salavati-Niasari M.J.
        Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach.
        J Mater Sci: Mater Electron. 2016; 27: 3918
        • Link S.
        • Wang Z.L.
        • El-Sayed M.A.
        Alloy formation of gold−silver nanoparticles and the dependence of the plasmon absorption on their composition.
        J Phys Chem B. 1999; 103: 529
        • Zinatloo-Ajabshir S.
        • Salavati-Niasari M.
        A sonochemical-assisted synthesis of pure nanocrystalline tetragonal zirconium dioxide using tetramethylethylenediamine.
        Int J Appl Ceram Technol. 2014; 11: 654
        • Yan Y.
        • Sun B.
        • Ma D.J.
        Resistive switching memory of single BiMnO3+δ nanorods.
        J Mater Sci: Mater Electron. 2016; 27: 512
        • Sun B.
        • Zhao W.
        • Wei L.
        • Li H.
        • Chen P.
        Enhanced resistive switching effect upon illumination in self-assembled NiWO4 nano-nests.
        Chem Commun. 2014; 50: 131-142
        • Yang Y.
        • Xia T.
        • Chen F.
        • et al.
        Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats.
        Mol Pharmaceut. 2012; 9: 48-58
        • Yannas I.V.
        • Kwan M.D.
        • Longaker M.T.
        Early fetal healing as a model for adult organ regeneration.
        Tissue Eng. 2007; 13: 1789-1798
        • Venkatachalam M.
        • Govindaraju K.
        • Mohamed Sadiq A.
        • Tamilselvan S.
        • Ganesh Kumar V.
        • Singaravelu G.
        Functionalization of gold nanoparticles as antidiabetic nanomaterials.
        Spectrochim Acta A Molec Biomolec Spectrosc. 2013; 116: 331-338
        • King H.
        • Albert R.E.
        • Herman W.H.
        Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections.
        Diabetes Care. 1998; 21: 1414-1431
        • Schwarz P.E.
        • Li J.
        • Lindstrom J.
        • Tuomilehto J.
        Tools for predicting the risk of type 2 diabetes in daily practice.
        Horm Metab Res. 2009; 41: 86-97
        • Grodzinski P.
        • Silver M.
        • Molnar L.K.
        Nanotechnology for cancer diagnostics: Promises and challenges.
        Exp Rev Mol Diagn. 2006; 6: 307-318
        • Sahoo S.K.
        • Parveen S.
        • Panda J.J.
        The present and future of nanotechnology in human health care.
        Nanomedicine (Lond). 2007; 3: 20-31
        • Tinder P.
        Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen.
        Ann Clin Biochem. 1969; 6: 24-29
        • Burke T.R.
        • Ye B.
        • Yan X.
        • et al.
        Small molecule interactions with protein-tyrosine phosphatase PTP1B and their use in inhibitor design.
        Biochemistry. 1996; 35: 15989-15996
        • Dreaden E.C.
        • Alkilany A.M.
        • Huang X.
        • Murphy C.J.
        • El- Sayed M.A.
        The golden age: Gold nanoparticles for biomedicine.
        Chem Soc Rev. 2012; 41: 2740-2779
        • Jain S.
        • Hirst D.G.
        • Brit J.M.
        Gold nanoparticles as novel agents for cancer therapy.
        J Radiol. 2012; 85: 101-113
        • Elia P.
        • Zach R.
        • Hazan S.
        • Kolusheva S.
        • Porat Z.
        • Zeiri Y.
        Green synthesis of gold nanoparticles using plant extracts as reducing agents.
        Int J Nanomed. 2014; 9: 4007-4021
        • Sheety A.
        Effect of the insulin plant (Costus igneus) leaves on dexamethasone-induced hyperglycemia.
        Int J Ayurveda Res. 2010; 1: 100-102
        • Shimada K.
        • Fujikawa K.
        • Yahara K.
        • Nakamura T.
        J Agr Food Chem.
        1992 (40:945–8)
        • Ebrahimzadeh M.A.
        • Nabavi S.M.
        • Nabavi S.F.
        • Bahramian F.
        • Bekhradnia A.R.
        Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum.
        Pak J Pharm Sci. 2010; 23: 29-34
        • Nishikimi M.
        • Kawai T.
        • Yagi K.
        Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species.
        J Biol Chem. 1992; 267: 21967-21972
        • Mitsuda H.
        • Yasumoto K.
        • Iwami K.
        Antioxidative action of indole compounds during the autoxidation of linoleic acid.
        Eiyo to Shokuryo. 1966; 19: 210-214
        • Halliwell B.
        • Gutteridge J.M.C.
        • Aruoma O.I.
        The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals.
        Anal Biochem. 1987; 165: 215-224
        • Yen C.Y.
        • Chen H.Y.
        Antioxidant activity of various tea extracts in relation to their antimutagenicity.
        J Agri Food Chem. 1995; 43: 27-32
        • Kasthuri J.
        • Kathiravan K.
        • Rajendiran N.
        Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach.
        J Nanopart Res. 2009; 11: 1075-1108
        • Karthick V.
        • Ganesh Kumar V.
        • Maiyalagan T.
        • et al.
        Green synthesis of well dispersed nanoparticles using leaf extract of medicinally useful Adhatoda vasica Nees.
        Micro Nanosyst. 2012; 4: 192-198
        • Khaleel Basha S.
        • Govindaraju K.
        • Manikandan R.
        • Ahn J.S.
        • Bae E.Y.
        • Singaravelu G.
        Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity.
        Colloids Surf B Biointerf. 2010; 75: 405-409
        • Govindaraju K.
        • Kiruthiga V.
        • Manikandan R.
        • Ashokkumar T.
        • Singaravelu G.
        Investigation of h-BN/Rh(111) nanomesh interacting with water and atomic hydrogen.
        Mater Lett. 2011; 65: 256-259
        • Ganesh Kumar V.
        • Dinesh Gokavarapu S.
        • Rajeswari A.
        • et al.
        Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata.
        Colloids Surf B: Biointerf. 2011; 87: 159-163
        • Philip D.
        • Unni C.
        • Aswathy Aromal S.
        • Vidhu V.K.
        Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.
        Spectrochim Acta A. 2011; 78: 899-904
        • Shankar S.S.
        • Rai A.
        • Ankamwar B.
        • Singh A.
        • Ahmed A.
        • Sastry M.
        Biological synthesis of triangular gold nanoprisms.
        Nat Mater. 2004; 3: 482-488
        • Daisy P.
        • Saipriya K.
        Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus.
        Int J Nanomed. 2012; 7: 1189-1202
        • Mubarak Ali D.
        • Thajuddin N.
        • Jeganathanb K.
        • Gunasekaran M.
        Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens.
        Colloid Surf B Biointerf. 2011; 85: 360-365
        • Ganesh Kumar V.
        • Dinesh Gokavarapu S.
        • Rajeswari A.
        • et al.
        Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata.
        Colloid Surf B Biointerfac. 2011; 87: 159-163
        • Mohammad F.
        • Arfin T.
        Thermodynamics and electrochemical characterization of core-shell type gold–coated superparamagnetic iron oxide nanoparticles.
        Adv Mat Lett. 2014; 6: 315-324
        • Fan J.
        • Chen S.
        • Gao Y.
        Coating gold nanoparticles with peptide molecules via a peptide elongation approach.
        Colloid Surf B: Biointerfac. 2003; 28: 199-207
        • Babu D.
        • Gurumurthy P.
        • Borra S.K.
        • Cherian K.M.
        Antioxidant and free radical scavenging activity of triphala determined by using different in vitro models.
        J Medicin Plant Res. 2013; 7: 2898-2905
        • Spencer J.P.E.
        • Jenner A.
        • Aruoma O.I.
        Intense oxidative DNA damage promoted by L-DOPA and its metabolites Implications for neurodegenerative disease.
        FEBS Lett. 1994; 353: 246-250
        • Nabavi S.M.
        • Ebrahimzadeh M.A.
        • Nabavi S.F.
        • Hamidinia A.
        • Bekhradnia A.R.
        Determination of antioxidant activity, phenol and flavonoid content of Parrotia persica Mey.
        Mey Pharmacologyonline. 2008 (2:560–7)
        • Gordon M.H.
        The mechanism of antioxidant action in vitro.
        (London, United Kingdom: Elsevier Applied Science)1990 (pgs. 1–18)
        • Connor E.E.
        • Mwamuka J.
        • Gole A.
        • Murphy C.J.
        • Wyatt M.D.
        Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity.
        Small. 2005; 1: 325-327
        • Kanth S.B.M.
        • Kalishwaralal K.
        • Sriram M.
        • et al.
        Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice.
        J Nanobiotechnol. 2010; 8: 16
        • Ali L.
        • Azad Khan A.K.
        • Mamun M.I.R.
        • et al.
        Studies on the hypoglycemic effects of fruits pulp, seed and whole plant of Momordica charantia on normal and diabetic model rats.
        Plant Med. 1993; 59: 408-412
        • Jansen J.
        • Karges W.
        • Rink L.
        Zinc and diabetes–clinical links and molecular mechanisms.
        J Nutr Biochem. 2009; 20: 399-417
        • Alkaladi A.
        • Abdelazim A.M.
        • Mohamed Afifi M.
        Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats.
        Int J Mol. 2014; 15: 2015-2023
        • Ambika S.
        • Saravanan R.
        Effect of bergenin on hepatic glucose metabolism and insulin signaling in C57BL/6J mice with high fat-diet induced type 2 diabetes.
        J Appl Biomed. 2016; 7: 221-227
        • Swanston-Flat S.K.
        • Day C.
        • Bailey C.J.
        • Flatt P.R.
        Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice.
        Diabetologia. 1990; 33: 462-464
        • Leu J.-G.
        • Chen S.-A.
        • Chen H.-M.
        • et al.
        The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid.
        Biol Med. 2012; 8: 767-775