Original Research| Volume 44, ISSUE 2, P146-155.e2, March 2020

Metformin and Dipeptidyl Peptidase-4 Inhibitor Differentially Modulate the Intestinal Microbiota and Plasma Metabolome of Metabolically Dysfunctional Mice



      Recent evidence indicates that gut microbiota is altered considerably by a variety of commonly prescribed medications. This study assessed the impact of 2 antidiabetic therapeutics on gut microbiota and markers of cardiometabolic disease in metabolically dysfunctional mice.


      C57BL/6 mice were fed a high-fat diet for 24 weeks while receiving 1 of 2 antidiabetic therapeutics—metformin or dipeptidyl peptidase-4 (DPP-4) inhibitor, PKF-275-055—for the final 12 weeks. Mice were assessed for weight gain, glucose and cholesterol metabolism, and adiposity. In addition, cecal microbiota was analyzed by 16S compositional sequencing, and plasma metabolome was analyzed by liquid chromatography with tandem mass spectrometry.


      Both therapeutics had similar metabolic effects, attenuating mesenteric adiposity and improving cholesterol metabolism and insulin sensitivity. However, multivariate analyses of microbiota and metabolomics data revealed clear divergence of the therapeutic groups. Although both metformin and PKF-275-055 mice displayed significantly decreased Firmicutes/Bacteroidetes ratios, only metformin harboured metabolic health-associated Akkermansia, Parabacteroides and Christensenella. Paradoxically, metformin also reduced α diversity, a metric frequently associated with host metabolic fitness. PKF-275-055 mice displayed elevated levels of butyrate-producing Ruminococcus and acetogen Dorea, with reduced levels of certain plasma sphingomyelin, phosphatidylcholine and lysophosphatidylcholine entities. In turn, metformin reduced levels of acylcarnitines, a functional group associated with systemic metabolic dysfunction. Finally, several associations were identified between metabolites and altered taxa.


      This study represents the first direct comparison of the microbiota-modifying effects of metformin and a DPP-4 inhibitor, and proposes several putative microbial targets both in terms of novel therapeutic development and adverse effect prevention.



      Des données probantes récentes montrent qu'un grand nombre de médicaments souvent prescrits modifient considérablement le microbiote intestinal. La présente étude a permis d’évaluer les effets de 2 traitements antidiabétiques sur le microbiote intestinal et les marqueurs de maladies cardiométaboliques chez des souris ayant un dysfonctionnement métabolique.


      Les souris C57BL/6 ont été soumises à un régime riche en matières grasses durant 24 semaines, et ont reçu 1 ou 2 traitements antidiabétiques (metformine ou inhibiteur de la dipeptidyl peptidase-4 [DPP-4], PKF-275-055) durant les 12 dernières semaines. Nous avons évalué le gain de poids, le métabolisme du glucose et du cholestérol, et l'adiposité des souris. De plus, nous avons analysé la composition du microbiote cæcal par séquençage compositionnel du 16S et le métabolome plasmatique par chromatographie en phase liquide couplée à un spectromètre de masse en tandem.


      Les 2 traitements ont montré des effets métaboliques similaires, qui atténuaient l'adiposité du mésentère et amélioraient le métabolisme du cholestérol et la sensibilité à l'insuline. Toutefois, les analyses multivariées des données sur le microbiote et le métabolisme ont révélé une divergence nette entre les groupes selon le traitement. Bien que les souris qui recevaient de la metformine ou du PKF-275-055 aient montré une diminution significative des rapports Firmicutes/Bacteroidetes, seule la metformine a permis d'abriter les bactéries Akkermansia, Parabacteroides et Christensenella associées à la santé métabolique. Paradoxalement, la metformine a aussi réduit la diversité α, un indicateur fréquemment associé à l'activité métabolique de l'hôte. Les souris qui recevaient le PKF-275-055 ont montré des concentrations élevées de bactéries Ruminococcus produisant du butyrate et de bactéries acétogènes Dorea, et des concentrations réduites de certaines entités plasmatiques de sphingomyéline, de phosphatidylcholine et de lysophosphatidylcholine. Pour sa part, la metformine a permis de réduire les concentrations d'acylcarnitines, un groupe fonctionnel associé au dysfonctionnement du métabolisme systémique. Finalement, nous avons déterminé plusieurs associations entre les métabolites et les taxons modifiés.


      Cette étude représente la première comparaison directe sur les effets de la metformine et d'un inhibiteur de la DPP-4 qui modifient le microbiote, et propose plusieurs cibles microbiennes présumées tant pour la mise au point de nouveaux traitements que pour la prévention des effets indésirables.


      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Danaei G.
        • Finucane M.M.
        • Lu Y.
        • et al.
        National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants.
        Lancet. 2011; 378: 31-40
        • NCD Risk Factor Collaboration (NCD-RisC)
        Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults.
        Lancet. 2017; 390: 2627-2642
        • Sender R.
        • Fuchs S.
        • Milo R.
        Revised estimates for the number of human and bacteria cells in the body.
        PLoS Biol. 2016; 14: e1002533
        • Patterson E.
        • Ryan P.M.
        • Cryan J.F.
        • et al.
        Gut microbiota, obesity and diabetes.
        Postgrad Med J. 2016; 92: 286-300
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature. 2013; 500: 541-546
        • Pedersen H.K.
        • Gudmundsdottir V.
        • Nielsen H.B.
        • et al.
        Human gut microbes impact host serum metabolome and insulin sensitivity.
        Nature. 2016; 535: 376-381
        • Wilkinson E.M.
        • Ilhan Z.E.
        • Herbst-Kralovetz M.M.
        Microbiota-drug interactions: Impact on metabolism and efficacy of therapeutics.
        Maturitas. 2018; 112: 53-63
        • Falony G.
        • Joossens M.
        • Vieira-Silva S.
        • et al.
        Population-level analysis of gut microbiome variation.
        Science. 2016; 352: 560-564
        • Jackson M.A.
        • Verdi S.
        • Maxan M.E.
        • et al.
        Gut microbiota associations with common diseases and prescription medications in a population-based cohort.
        Nat Commun. 2018; 9: 2655
        • Sousa T.
        • Paterson R.
        • Moore V.
        • Carlsson A.
        • Abrahamsson B.
        • Basit A.W.
        The gastrointestinal microbiota as a site for the biotransformation of drugs.
        Int J Pharm. 2008; 363: 1-25
        • Jones B.V.
        • Begley M.
        • Hill C.
        • Gahan C.G.
        • Marchesi J.R.
        Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome.
        Proc Natl Acad Sci U S A. 2008; 105: 13580-13585
        • Enright E.F.
        • Griffin B.T.
        • Gahan C.G.M.
        • Joyce S.A.
        Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism.
        Pharmacol Res. 2018; 133: 170-186
        • Enright E.F.
        • Joyce S.A.
        • Gahan C.G.
        • Griffin B.T.
        Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility.
        Mol Pharm. 2017; 14: 1251-1263
        • Lee H.
        • Ko G.
        Effect of metformin on metabolic improvement and gut microbiota.
        Appl Environ Microbiol. 2014; 80: 5935-5943
        • Wu H.
        • Esteve E.
        • Tremaroli V.
        • et al.
        Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug.
        Nat Med. 2017; 23: 850-858
        • Maniar K.
        • Moideen A.
        • Bhattacharyya R.
        • Banerjee D.
        Metformin exerts anti-obesity effect via gut microbiome modulation in prediabetics: A hypothesis.
        Med Hypotheses. 2017; 104: 117-120
        • Mardinoglu A.
        • Boren J.
        • Smith U.
        Confounding effects of metformin on the human gut microbiome in type 2 diabetes.
        Cell Metab. 2016; 23: 10-12
        • Everard A.
        • Lazarevic V.
        • Derrien M.
        • et al.
        Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice.
        Diabetes. 2011; 60: 2775-2786
        • National Institute for Health and Clinical Excellence
        Type 2 Diabetes in Adults: Management.
        National Institute for Health and Clinical Excellence, London, UK2017 ( Accessed August 1, 2019)
        • Baker G.C.
        • Smith J.J.
        • Cowan D.A.
        Review and re-analysis of domain-specific 16S primers.
        J Microbiol Methods. 2003; 55: 541-555
        • Claesson M.J.
        • Wang Q.
        • O'Sullivan O.
        • et al.
        Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions.
        Nucleic Acids Res. 2010; 38: e200
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Aronesty E.
        Comparison of sequencing utility programs.
        The Open Bioinformatics Journal. 2013; 7
        • Bokulich N.A.
        • Subramanian S.
        • Faith J.J.
        • et al.
        Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing.
        Nat Methods. 2013; 10: 57-59
        • Edgar R.C.
        Search and clustering orders of magnitude faster than BLAST.
        Bioinformatics. 2010; 26: 2460-2461
        • Caporaso J.G.
        • Bittinger K.
        • Bushman F.D.
        • DeSantis T.Z.
        • Andersen G.L.
        • Knight R.
        PyNAST: A flexible tool for aligning sequences to a template alignment.
        Bioinformatics. 2010; 26: 266-267
        • Maidak B.L.
        • Cole J.R.
        • Lilburn T.G.
        • et al.
        The RDP-II (Ribosomal Database Project).
        Nucleic Acids Res. 2001; 29: 173-174
        • Segata N.
        • Izard J.
        • Waldron L.
        • et al.
        Metagenomic biomarker discovery and explanation.
        Genome Biol. 2011; 12: R60
        • Xia J.
        • Wishart D.S.
        Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis.
        Curr Protoc Bioinformatics. 2016; 55: 14.10.1-14.10.91
        • Lê Cao K.-A.
        • Boitard S.
        • Besse P.
        Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems.
        BMC Bioinformatics. 2011; 12: 253
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Rotella C.M.
        • Monami M.
        • Mannucci E.
        Metformin beyond diabetes: New life for an old drug.
        Curr Diabetes Rev. 2006; 2: 307-315
        • Clarke B.F.
        • Duncan L.J.
        Comparison of chlorpropamide and metformin treatment on weight and blood-glucose response of uncontrolled obese diabetics.
        Lancet. 1968; 1: 123-126
        • Akarte A.S.
        • Srinivasan B.P.
        • Gandhi S.
        A novel long acting DPP-IV inhibitor PKF-275-055 stimulates beta-cell proliferation resulting in improved glucose homeostasis in diabetic rats.
        Biochem Pharmacol. 2012; 83: 241-252
        • Pentikainen P.J.
        • Voutilainen E.
        • Aro A.
        • Uusitupa M.
        • Penttila I.
        • Vapaatalo H.
        Cholesterol lowering effect of metformin in combined hyperlipidemia: Placebo controlled double blind trial.
        Ann Med. 1990; 22: 307-312
        • Monami M.
        • Lamanna C.
        • Desideri C.M.
        • Mannucci E.
        DPP-4 inhibitors and lipids: Systematic review and meta-analysis.
        Adv Ther. 2012; 29: 14-25
        • Karlsson C.L.
        • Onnerfalt J.
        • Xu J.
        • Molin G.
        • Ahrne S.
        • Thorngren-Jerneck K.
        The microbiota of the gut in preschool children with normal and excessive body weight.
        Obesity (Silver Spring). 2012; 20: 2257-2261
        • Shin N.R.
        • Lee J.C.
        • Lee H.Y.
        • et al.
        An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice.
        Gut. 2014; 63: 727-735
        • Schneeberger M.
        • Everard A.
        • Gomez-Valades A.G.
        • et al.
        Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice.
        Sci Rep. 2015; 5: 16643
        • Everard A.
        • Belzer C.
        • Geurts L.
        • et al.
        Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.
        Proc Natl Acad Sci U S A. 2013; 110: 9066-9071
        • Wu TR.
        • Lin CS.
        • Chang CJ.
        • et al.
        Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis.
        Gut. 2019; 68: 248-262
        • Martinez I.
        • Kim J.
        • Duffy P.R.
        • Schlegel V.L.
        • Walter J.
        Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects.
        PLoS One. 2010; 5: e15046
        • Haro C.
        • Montes-Borrego M.
        • Rangel-Zuniga O.A.
        • et al.
        Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population.
        J Clin Endocrinol Metab. 2016; 101: 233-242
        • Lee H.
        • Lee Y.
        • Kim J.
        • et al.
        Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice.
        Gut Microbes. 2018; 9: 155-165
        • Wang K.
        • Liao M.
        • Zhou N.
        • et al.
        Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids.
        Cell Rep. 2019; 26: 222-235
        • Goodrich J.K.
        • Waters J.L.
        • Poole A.C.
        • et al.
        Human genetics shape the gut microbiome.
        Cell. 2014; 159: 789-799
        • Garnett J.P.
        • Baker E.H.
        • Naik S.
        • et al.
        Metformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose.
        Thorax. 2013; 68: 835-845
        • Patkee W.R.
        • Carr G.
        • Baker E.H.
        • Baines D.L.
        • Garnett J.P.
        Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth.
        J Cell Mol Med. 2016; 20: 758-764
        • Singhal A.
        • Jie L.
        • Kumar P.
        • et al.
        Metformin as adjunct antituberculosis therapy.
        Sci Transl Med. 2014; 6: 263ra159
        • Degner N.R.
        • Wang J.Y.
        • Golub J.E.
        • Karakousis P.C.
        Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment.
        Clin Infect Dis. 2018; 66: 198-205
        • Marupuru S.
        • Senapati P.
        • Pathadka S.
        • Miraj S.S.
        • Unnikrishnan M.K.
        • Manu M.K.
        Protective effect of metformin against tuberculosis infections in diabetic patients: An observational study of south Indian tertiary healthcare facility.
        Braz J Infect Dis. 2017; 21: 312-316
        • Dujic T.
        • Zhou K.
        • Donnelly L.A.
        • Tavendale R.
        • Palmer C.N.
        • Pearson E.R.
        Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A GoDARTS study.
        Diabetes. 2015; 64: 1786-1793
        • Taras D.
        • Simmering R.
        • Collins M.D.
        • Lawson P.A.
        • Blaut M.
        Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces.
        Int J Syst Evol Microbiol. 2002; 52: 423-428
        • Ramakrishna B.S.
        Role of the gut microbiota in human nutrition and metabolism.
        J Gastroenterol Hepatol. 2013; 28: 9-17
        • Yan X.
        • Feng B.
        • Li P.
        • Tang Z.
        • Wang L.
        Microflora disturbance during progression of glucose intolerance and effect of sitagliptin: An animal study.
        J Diabetes Res. 2016; 2016: 2093171
        • Zambell K.L.
        • Fitch M.D.
        • Fleming S.E.
        Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells.
        J Nutr. 2003; 133: 3509-3515
        • Frost G.
        • Sleeth M.L.
        • Sahuri-Arisoylu M.
        • et al.
        The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism.
        Nat Commun. 2014; 5: 3611
        • Anderson J.W.
        • Bridges S.R.
        Short-chain fatty acid fermentation products of plant fiber affect glucose metabolism of isolated rat hepatocytes.
        Proc Soc Exp Biol Med. 1984; 177: 372-376
        • Canani R.B.
        • Costanzo M.D.
        • Leone L.
        • Pedata M.
        • Meli R.
        • Calignano A.
        Potential beneficial effects of butyrate in intestinal and extraintestinal diseases.
        World J Gastroenterol. 2011; 17: 1519-1528
        • Olivares M.
        • Neyrinck A.M.
        • Potgens S.A.
        • et al.
        The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice.
        Diabetologia. 2018; 61: 1838-1848
        • Nakamura H.
        • Jinzu H.
        • Nagao K.
        • et al.
        Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients.
        Nutr Diabetes. 2014; 4: e133
        • Suzuki S.
        • Kodera Y.
        • Saito T.
        • et al.
        Methionine sulfoxides in serum proteins as potential clinical biomarkers of oxidative stress.
        Sci Rep. 2016; 6: 38299
        • Straczkowski M.
        • Kowalska I.
        • Nikolajuk A.
        • et al.
        Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle.
        Diabetes. 2004; 53: 1215-1221
        • Al-Makdissy N.
        • Bianchi A.
        • Younsi M.
        • et al.
        Down-regulation of peroxisome proliferator-activated receptor-gamma gene expression by sphingomyelins.
        FEBS Lett. 2001; 493: 75-79
        • Summers S.A.
        • Nelson D.H.
        A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome.
        Diabetes. 2005; 54: 591-602
        • Suvitaival T.
        • Bondia-Pons I.
        • Yetukuri L.
        • et al.
        Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men.
        Metabolism. 2018; 78: 1-12
        • Zhang W.
        • Randell E.W.
        • Sun G.
        • et al.
        Hyperglycemia-related advanced glycation end-products is associated with the altered phosphatidylcholine metabolism in osteoarthritis patients with diabetes.
        PLoS One. 2017; 12: e0184105
        • Hoppel C.L.
        • Genuth S.M.
        Carnitine metabolism in normal-weight and obese human subjects during fasting.
        Am J Physiol. 1980; 238: E409-E415
        • Mihalik S.J.
        • Goodpaster B.H.
        • Kelley D.E.
        • et al.
        Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity.
        Obesity (Silver Spring). 2010; 18: 1695-1700
        • Koves T.R.
        • Ussher J.R.
        • Noland R.C.
        • et al.
        Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.
        Cell Metab. 2008; 7: 45-56
        • Muoio D.M.
        • Neufer P.D.
        Lipid-induced mitochondrial stress and insulin action in muscle.
        Cell Metab. 2012; 15: 595-605
        • Isomaa B.
        • Almgren P.
        • Tuomi T.
        • et al.
        Cardiovascular morbidity and mortality associated with the metabolic syndrome.
        Diabetes Care. 2001; 24: 683-689