Advertisement

Role of Estrogen in Type 1 and Type 2 Diabetes Mellitus: A Review of Clinical and Preclinical Data

  • Monica De Paoli
    Affiliations
    Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada

    Department of Medicine, McMaster University, Hamilton, Ontario, Canada
    Search for articles by this author
  • Geoff H. Werstuck
    Correspondence
    Address for correspondence: Geoff H. Werstuck PhD, Thrombosis and Atherosclerosis Research Institute, McMaster University, 237 Barton Street East, Hamilton, Ontario L8L 2X2, Canada.
    Affiliations
    Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada

    Department of Medicine, McMaster University, Hamilton, Ontario, Canada
    Search for articles by this author
Published:January 12, 2020DOI:https://doi.org/10.1016/j.jcjd.2020.01.003

      Abstract

      The incidence and prevalence of diabetes mellitus, and the cardiovascular complications associated with this disease, are rapidly increasing worldwide. Individuals with diabetes have a higher mortality rate due to cardiovascular diseases and a reduced life expectancy compared to those without diabetes. This poses a significant economic burden on health-care systems worldwide, making the diabetes epidemic a global health crisis. Sex differences in the presentation and outcome of diabetes do exist. Premenopausal women are protected from developing diabetes and its cardiovascular complications relative to males and postmenopausal women. However, women with diabetes tend to have a higher mortality as a result of cardiovascular complications than age-matched men. Despite this evidence, preclinical and clinical research looking at sex as a biologic variable in metabolic disorders and their cardiovascular complications is very limited. The aim of this review is to highlight the current knowledge of the potential protective role of estrogens in humans as well as rodent models of diabetes mellitus, and the possible pathways by which this protection is conferred. We stress the importance of increasing knowledge of sex-specific differences to facilitate the development of more targeted prevention strategies.

      Résumé

      L’incidence et la prévalence du diabète sucré et les complications cardiovasculaires associées à cette maladie ne cessent d’augmenter dans le monde. Les personnes diabétiques ont un taux de mortalité plus élevé en raison des maladies cardiovasculaires et une espérance de vie plus courte que les personnes non diabétiques. Pour les systèmes de soins de santé du monde entier, il s’agit d’un fardeau économique important, qui fait de l’épidémie du diabète une crise mondiale de la santé. Le tableau clinique et l’évolution du diabète montrent des différences entre les sexes. Par rapport aux hommes et aux femmes postménopausées, les femmes préménopausées sont à l’abri du diabète et de ses complications cardiovasculaires. Toutefois, du fait des complications cardiovasculaires, les femmes diabétiques présentent une mortalité plus élevée que les hommes appariés selon l’âge. En dépit de ces données scientifiques, la recherche préclinique et clinique, qui montre que le sexe est une variable biologique des perturbations métaboliques et de leurs complications cardiovasculaires, est très limitée. L’objectif de la présente étude est de présenter les connaissances actuelles sur le rôle protecteur potentiel des œstrogènes dans des modèles de diabète sucré chez les humains et chez les rongeurs, et les voies par lesquelles cette protection peut être obtenue. Nous insistons sur l’importance d’accroître les connaissances sur les différences liées au sexe pour faciliter l’élaboration de stratégies de prévention plus ciblées.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cnop M.
        • Welsh N.
        • Jonas J.-C.
        • Jörns A.
        • Lenzen S.
        • Eizirik D.L.
        Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities.
        Diabetes. 2005; 54: S97-S107
        • Fowler M.J.
        Microvascular and macrovascular complications of diabetes.
        Clin Diabetes. 2008; 26: 77-82
        • Di Angelantonio E.
        • Kaptoge S.
        • Wormser D.
        • et al.
        • Emerging Risk Factors Collaboration
        Association of cardiometabolic multimorbidity with mortality.
        JAMA. 2015; 314: 52-60
        • Booth G.L.
        • Kapral M.K.
        • Fung K.
        • Tu J.V.
        Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: A population-based retrospective cohort study.
        Lancet. 2006; 368: 29-36
        • Narayan K.M.V.
        • Boyle J.P.
        • Thompson T.J.
        • Sorensen S.W.
        • Williamson D.F.
        Lifetime risk for diabetes mellitus in the United States.
        JAMA. 2003; 290: 1884-1890
        • Lehto S.
        • Rönnemaa T.
        • Pyörälä K.
        • Laakso M.
        Cardiovascular risk factors clustering with endogenous hyperinsulinaemia predict death from coronary heart disease in patients with Type II diabetes.
        Diabetologia. 2000; 43: 148-155
        • Soedamah-Muthu S.S.
        • Fuller J.H.
        • Mulnier H.E.
        • Raleigh V.S.
        • Lawrenson R.A.
        • Colhoun H.M.
        High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: A cohort study using the general practice research database.
        Diabetes Care. 2006; 29: 798-804
        • Patterson C.C.
        • Dahlquist G.G.
        • Gyürüs E.
        • Green A.
        • Soltész G.
        Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: A multicentre prospective registration study.
        Lancet. 2009; 373: 2027-2033
        • Kaiser A.B.
        • Zhang N.
        • Pluijm W.V.D.
        Global prevalence of type 2 diabetes over the next ten years (2018-2028).
        Diabetes. 2018; 67 (202-LB)
        • Anja B.
        • Laura R.
        The cost of diabetes in Canada over 10 years: Applying attributable health care costs to a diabetes incidence prediction model.
        Health Promot Chronic Dis Prev Can Res Policy Pract. 2017; 37: 49-53
        • Rowley W.R.
        • Bezold C.
        • Arikan Y.
        • Byrne E.
        • Krohe S.
        Diabetes 2030: Insights from yesterday, today, and future trends.
        Popul Health Manag. 2017; 20: 6-12
        • Rydén L.
        • Grant P.J.
        • Anker S.D.
        • et al.
        • Authors/Task Force Members
        ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force on Diabetes, Pre-diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD).
        Eur Heart J. 2013; 34: 3035-3087
        • Gale E.A.
        • Gillespie K.M.
        Diabetes and gender.
        Diabetologia. 2001; 44: 3-15
        • Beeson P.B.
        Age and sex associations of 40 autoimmune diseases.
        Am J Med. 1994; 96: 457-462
        • Wild S.
        • Roglic G.
        • Green A.
        • Sicree R.
        • King H.
        Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030.
        Diabetes Care. 2004; 27: 1047-1053
        • Wändell P.E.
        • Carlsson A.C.
        Gender differences and time trends in incidence and prevalence of type 2 diabetes in Sweden---a model explaining the diabetes epidemic worldwide today?.
        Diabetes Res Clin Pract. 2014; 106: e90-e92
        • Choi Y.J.
        • Kim H.C.
        • Kim H.M.
        • Park S.W.
        • Kim J.
        • Kim D.J.
        Prevalence and management of diabetes in Korean adults: Korea National Health and Nutrition Examination Surveys 1998–2005.
        Diabetes Care. 2009; 32: 2016-2020
        • Ha K.H.
        • Kim D.J.
        Trends in the diabetes epidemic in Korea.
        Endocrinol Metab. 2015; 30: 142-146
        • Lebovitz H.E.
        • Banerji M.A.
        Ketosis-prone diabetes (Flatbush diabetes): An emerging worldwide clinically important entity.
        Curr Diab Rep. 2018; 18: 120
        • The Emerging Risk Factors Collaboration
        Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies.
        Lancet. 2010; 375: 2215-2222
        • Margolis K.L.
        • Bonds D.E.
        • Rodabough R.J.
        • et al.
        Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: Results from the Women’s Health Initiative Hormone Trial.
        Diabetologia. 2004; 47: 1175-1187
        • Kanaya A.M.
        • Herrington D.
        • Vittinghoff E.
        • et al.
        Glycemic effects of postmenopausal hormone therapy: The Heart and Estrogen/Progestin Replacement Study: A randomized, double-blind, placebo-controlled trial.
        Ann Intern Med. 2003; 138: 1-9
        • Gregg E.W.
        • Gu Q.
        • Cheng Y.J.
        • Narayan K.M.V.
        • Cowie C.C.
        Mortality trends in men and women with diabetes, 1971 to 2000.
        Ann Intern Med. 2007; 147: 149-155
        • Colhoun H.
        Coronary heart disease in women: Why the disproportionate risk?.
        Curr Diab Rep. 2006; 6: 22-28
        • Anand S.S.
        • Islam S.
        • Rosengren A.
        • et al.
        Risk factors for myocardial infarction in women and men: Insights from the INTERHEART study.
        Eur Heart J. 2008; 29: 932-940
        • Peters S.A.E.
        • Huxley R.R.
        • Woodward M.
        Diabetes as risk factor for incident coronary heart disease in women compared with men: A systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events.
        Diabetologia. 2014; 57: 1542-1551
        • Huxley R.
        • Barzi F.
        • Woodward M.
        Excess risk of fatal coronary heart disease associated with diabetes in men and women: Meta-analysis of 37 prospective cohort studies.
        BMJ. 2006; 332: 73-78
        • Peters S.A.E.
        • Huxley R.R.
        • Woodward M.
        Diabetes as a risk factor for stroke in women compared with men: A systematic review and meta-analysis of 64 cohorts, including 775 385 individuals and 12 539 strokes.
        Lancet. 2014; 383: 1973-1980
        • Renzhe C.
        • Hiroyasu I.
        • Kazumasa Y.
        • et al.
        Diabetes mellitus and risk of stroke and its subtypes among Japanese.
        Stroke. 2011; 42: 2611-2614
        • Abbott R.D.
        • Donahue R.P.
        • Kannel W.B.
        • Wilson P.W.F.
        The impact of diabetes on survival following myocardial infarction in men vs women: The Framingham Study.
        JAMA. 1988; 260: 3456-3460
        • Roche M.M.
        • Wang P.P.
        Sex differences in all-cause and cardiovascular mortality, hospitalization for individuals with and without diabetes, and patients with diabetes diagnosed early and late.
        Diabetes Care. 2013; 36: 2582-2590
        • Eriksson M.
        • Carlberg B.
        • Eliasson M.
        The disparity in long-term survival after a first stroke in patients with and without diabetes persists: The Northern Sweden MONICA study.
        Cerebrovasc Dis. 2012; 34: 153-160
        • Ballotari P.
        • Ranieri S.C.
        • Luberto F.
        • et al.
        Sex differences in cardiovascular mortality in diabetics and nondiabetic subjects: A population-based study (Italy).
        Int J Endocrinol. 2015; 2015: 914057
        • NCD Risk Factor Collaboration (NCD-RisC)
        Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants.
        Lancet. 2016; 387: 1513-1530
        • Ferrannini E.
        Physiological and metabolic consequences of obesity.
        Metabolism. 1995; 44: 15-17
        • Rosano D.G.M.C.
        • Vitale C.
        • Marazzi G.
        • Volterrani M.
        Menopause and cardiovascular disease: The evidence.
        Climacteric. 2007; 10: 19-24
        • Ormazabal V.
        • Nair S.
        • Elfeky O.
        • Aguayo C.
        • Salomon C.
        • Zuñiga F.A.
        Association between insulin resistance and the development of cardiovascular disease.
        Cardiovasc Diabetol. 2018; 17
        • Venegas-Pino D.E.
        • Wang P.-W.
        • Stoute H.K.
        • et al.
        Sex-specific differences in an ApoE(-/-):Ins2(+/Akita) mouse model of accelerated atherosclerosis.
        Am J Pathol. 2016; 186: 67-77
        • Rettberg J.R.
        • Yao J.
        • Brinton R.D.
        Estrogen: A master regulator of bioenergetic systems in the brain and body.
        Front Neuroendocrinol. 2014; 35: 8-30
        • Alonso-Magdalena P.
        • Ropero A.B.
        • Carrera M.P.
        • et al.
        Pancreatic insulin content regulation by the estrogen receptor ERα.
        PLoS One. 2008; 3: e2069
        • Santos R.S.
        • Batista T.M.
        • Camargo R.L.
        • et al.
        Lacking of estradiol reduces insulin exocytosis from pancreatic β-cells and increases hepatic insulin degradation.
        Steroids. 2016; 114: 16-24
        • Weigt C.
        • Hertrampf T.
        • Flenker U.
        • et al.
        Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker Diabetic Fatty (ZDF) rats.
        J Steroid Biochem Mol Biol. 2015; 154: 12-22
        • Le May C.
        • Chu K.
        • Hu M.
        • et al.
        Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice.
        Proc Natl Acad Sci USA. 2006; 103: 9232-9237
        • Yamabe N.
        • Kang K.S.
        • Zhu B.T.
        Beneficial effect of 17β-estradiol on hyperglycemia and islet β-cell functions in a streptozotocin-induced diabetic rat model.
        Toxicol Appl Pharmacol. 2010; 249: 76-85
        • de Souza C.F.
        • Stopa L.R.S.
        • Santos G.F.
        • et al.
        Estradiol protects against ovariectomy-induced susceptibility to the anabolic effects of glucocorticoids in rats.
        Life Sci. 2019; 218: 185-196
        • Tiano J.P.
        • Delghingaro-Augusto V.
        • Le May C.
        • et al.
        Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes.
        J Clin Invest. 2011; 121: 3331-3342
        • Yuchi Y.
        • Cai Y.
        • Legein B.
        • et al.
        Estrogen receptor α regulates β-cell formation during pancreas development and following injury.
        Diabetes. 2015; 64: 3218-3228
        • Alonso-Magdalena P.
        • Ropero A.B.
        • García-Arévalo M.
        • et al.
        Antidiabetic actions of an estrogen receptor β selective agonist.
        Diabetes. 2013; 62: 2015-2025
        • Liu S.
        • Le May C.
        • Wong W.P.S.
        • et al.
        Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival.
        Diabetes. 2009; 58: 2292-2302
        • Belch J.
        • MacCuish A.
        • Campbell I.
        • et al.
        The prevention of progression of arterial disease and diabetes (POPADAD) trial: Factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease.
        BMJ. 2008; 337: a1840
        • Lonn E.
        • Bosch J.
        • Yusuf S.
        • et al.
        Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial.
        JAMA. 2005; 293: 1338-1347
        • Lipson K.L.
        • Fonseca S.G.
        • Ishigaki S.
        • et al.
        Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1.
        Cell Metab. 2006; 4: 245-254
        • Scheuner D.
        • Mierde D.V.
        • Song B.
        • et al.
        Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis.
        Nat Med. 2005; 11: 757
        • Back S.H.
        • Kaufman R.J.
        Endoplasmic reticulum stress and type 2 diabetes.
        Annu Rev Biochem. 2012; 81: 767-793
        • Wu J.
        • Kaufman R.J.
        From acute ER stress to physiological roles of the unfolded protein response.
        Cell Death Differ. 2006; 13: 374-384
        • Lindholm D.
        • Korhonen L.
        • Eriksson O.
        • Kõks S.
        Recent insights into the role of unfolded protein response in ER stress in health and disease.
        Front Cell Dev Biol. 2017; 5: 48
        • Ozcan L.
        • Tabas I.
        Role of endoplasmic reticulum stress in metabolic disease and other disorders.
        Annu Rev Med. 2012; 63: 317-328
        • Kooptiwut S.
        • Mahawong P.
        • Hanchang W.
        • et al.
        Estrogen reduces endoplasmic reticulum stress to protect against glucotoxicity induced-pancreatic β-cell death.
        J Steroid Biochem Mol Biol. 2014; 139: 25-32
        • Kooptiwut S.
        • Kaewin S.
        • Semprasert N.
        • et al.
        Estradiol prevents high glucose-induced β-cell apoptosis by decreased BTG2 expression.
        Sci Rep. 2018; 8: 12256
        • Kang L.
        • Chen C.-H.
        • Wu M.-H.
        • Chang J.-K.
        • Chang F.-M.
        • Cheng J.-T.
        17β-Estradiol protects against glucosamine-induced pancreatic β-cell dysfunction.
        Menopause. 2014; 21: 1239
        • Xu B.
        • Allard C.
        • Alvarez-Mercado A.I.
        • et al.
        Estrogens promote misfolded proinsulin degradation to protect insulin production and delay diabetes.
        Cell Rep. 2018; 24: 181-196
        • Reusch J.E.B.
        • Kumar T.R.
        • Regensteiner J.G.
        • et al.
        Identifying the critical gaps in research on sex differences in metabolism across the life span.
        Endocrinology. 2018; 159: 9-19
        • Yokoi N.
        • Hoshino M.
        • Hidaka S.
        • et al.
        A novel rat model of type 2 diabetes: The Zucker fatty diabetes mellitus ZFDM rat.
        J Diabetes Res. 2013; 2013: 103731
        • Kim J.H.
        • Stewart T.P.
        • Soltani-Bejnood M.
        • et al.
        Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice.
        J Endocrinol. 2006; 191: 437-446
        • Kawano K.
        • Hirashima T.
        • Mori S.
        • Natori T.
        OLETF (Otsuka Long-Evans Tokushima Fatty) rat: A new NIDDM rat strain.
        Diabetes Res Clin Pract. 1994; 24: S317-S320
        • Zhu M.
        • Mizuno A.
        • Kuwajima M.
        • et al.
        Ovarian hormone-induced beta-cell hypertrophy contributes to the homeostatic control of beta-cell mass in OLETF female rat, a model of type II diabetes.
        Diabetologia. 1998; 41: 799-805
        • John C.
        • Grune J.
        • Ott C.
        • et al.
        Sex differences in cardiac mitochondria in the New Zealand obese mouse.
        Front Endocrinol. 2018; 9
        • Vogel H.
        • Mirhashemi F.
        • Liehl B.
        • et al.
        Estrogen deficiency aggravates insulin resistance and induces β-cell loss and diabetes in female New Zealand obese mice.
        Horm Metab Res. 2013; 45: 430-435
        • Noormets K.
        • Kõks S.
        • Muldmaa M.
        • Mauring L.
        • Vasar E.
        • Tillmann V.
        Sex differences in the development of diabetes in mice with deleted wolframin (Wfs1) gene.
        Exp Clin Endocrinol. 2011; 119: 271-275
        • Smith C.J.A.
        • Crock P.A.
        • King B.R.
        • Meldrum C.J.
        • Scott R.J.
        Phenotype-genotype correlations in a series of Wolfram syndrome families.
        Diabetes Care. 2004; 27: 2003-2009
        • Yoshioka M.
        • Kayo T.
        • Ikeda T.
        • Koizumi A.
        A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice.
        Diabetes. 1997; 46: 887-894
        • Paik S.G.
        • Michelis M.A.
        • Kim Y.T.
        • Shin S.
        Induction of insulin-dependent diabetes by streptozotocin. Inhibition by estrogens and potentiation by androgens.
        Diabetes. 1982; 31: 724-729
        • Li Y.
        • Huang J.
        • Yan Y.
        • et al.
        Preventative effects of resveratrol and estradiol on streptozotocin-induced diabetes in ovariectomized mice and the related mechanisms.
        PLoS One. 2018; 13: e0204499
        • Hamden K.
        • Carreau S.
        • Boujbiha M.A.
        • et al.
        Hyperglycaemia, stress oxidant, liver dysfunction and histological changes in diabetic male rat pancreas and liver: Protective effect of 17β-estradiol.
        Steroids. 2008; 73: 495-501