Advertisement

A More Atherogenic Lipoprotein Status Is Present in Adults With Type 2 Diabetes Mellitus Than in Those Without With Equivalent Degrees of Hypertriglyceridemia

  • Cathy J. Sun
    Affiliations
    Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Diane Brisson
    Affiliations
    Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, Québec, Canada
    Search for articles by this author
  • Rahul Sharma
    Affiliations
    Undergraduate Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
  • Nicholas Birkett
    Affiliations
    School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
  • Daniel Gaudet
    Affiliations
    Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Lipid Clinic Chicoutimi Hospital and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, Québec, Canada
    Search for articles by this author
  • Teik C. Ooi
    Correspondence
    Address for correspondence: Teik C. Ooi MBBS, Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, 1967 Riverside Drive, 4th Floor Endocrinology, Ottawa, Ontario K1H 7W9, Canada.
    Affiliations
    Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
    Search for articles by this author
Published:February 08, 2022DOI:https://doi.org/10.1016/j.jcjd.2022.02.001

      Abstract

      Objectives

      The impact of type 2 diabetes (T2DM) on biomarkers denoting lipoprotein compositional status was studied in mild and moderate hypertriglyceridemia (HTG). Diabetic dyslipidemia pathophysiology could contribute to differences in lipoprotein compositional status, which could be reflected in the preferred cardiovascular disease risk prediction markers in HTG: non–high-density lipoprotein cholesterol (non-HDLC) and apolipoprotein B (apoB).

      Methods

      A total of 2,775 fasting lipid profiles from a tertiary care lipid clinic were analyzed as 2 subgroups (with and without T2DM), stratified by triglyceride (TG) levels: normotriglyceridemia (TG 0.01 to 1.7 mmol/L), mild HTG (TG 1.71 to 5 mmol/L) and moderate HTG (TG 5.01 to 10 mmol/L). The mean non-HDLC:apoB ratio in each TG stratum and subgroup was analyzed. We also used linear regression to assess the correlation between non-HDLC and apoB.

      Results

      The mean non-HDLC:apoB ratio was increased in both subgroups in patients with mild and moderate HTG, compared to those with normotriglyceridemia. In moderate HTG, the mean non-HDLC:apoB ratio in the subgroup with T2DM was significantly lower than the subgroup without T2DM. In mild and moderate HTG, the subgroup with T2DM had a stronger correlation between non-HDLC and apoB than did the subgroup without T2DM.

      Discussion and conclusions

      In mild and moderate HTG, adults with T2DM exhibit lipid profiles that represent a different and more atherogenic lipoprotein compositional status, when compared with adults without T2DM. For the same severity of HTG, the lipoprotein compositional status in diabetic dyslipidemia suggests that there is increased abundance of smaller non-HDL particles and their remnants, which are highly atherogenic.

      Résumé

      Objectifs

      Les répercussions du diabète de type 2 (DT2) sur les biomarqueurs indiquant la composition des lipoprotéines ont fait l’objet de l’étude sur l’hypertriglycéridémie (HTG) légère et modérée. La physiopathologie de la dyslipidémie du diabète pourrait contribuer aux différences dans la composition des lipoprotéines, qui pourraient se refléter dans les marqueurs de prédiction privilégiés du risque de maladies cardiovasculaires lors d’HTG : le cholestérol non à lipoprotéines de haute densité (non-HDLC) et l’apolipoprotéine B (apoB).

      Méthodes

      Un total de 2775 bilans lipidiques à jeun d’une clinique des lipides d’un hôpital de soins tertiaires ont fait l’objet d’une analyse en 2 sous-groupes (atteints ou non du DT2), d’une stratification en fonction des concentrations en triglycérides (TG) : normotriglycéridémie (TG de 0,01 à 1,7 mmol/L), HTG légère (TG de 1,71 à 5 mmol/L) et HTG modérée (TG de 5,01 à 10 mmol/L). La moyenne du ratio non-HDLC:apoB de chaque strate de TG et sous-groupe a fait l’objet d’une analyse. Nous avons également utilisé la régression linéaire pour évaluer la corrélation entre le non-HDLC et l’apoB.

      Résultats

      La moyenne du ratio non-HDLC:apoB a augmenté dans les 2 sous-groupes de patients qui avaient une HTG légère ou modérée, et par rapport à ceux qui avaient une normotriglycéridémie. Lors d’HTG modérée, la moyenne du ratio non-HDLC:apoB du sous-groupe atteint du DT2 était significativement plus basse que celle du sous-groupe non atteint du DT2. Lors d’HTG légère ou modérée, le sous-groupe atteint du DT2 montrait une corrélation plus forte du non-HDLC et d’apoB que le sous-groupe non atteint du DT2.

      Discussion et Conclusions

      Lors d’HTG légère et modérée, les adultes atteints du DT2 montrent des bilans lipidiques qui représentent une composition différente et plus athérogène des lipoprotéines lorsqu’on les compare aux adultes non atteints du DT2. Lors d’HTG de même gravité, la composition des lipoprotéines dans la dyslipidémie diabétique indique qu’il y a une augmentation des plus petites particules de non-HDL et de leurs résidus, qui sont hautement athérogènes.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pearson G.J.
        • Thanassoulis G.
        • Anderson T.J.
        • et al.
        2021 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults.
        Can J Cardiol. 2021; 37: 1129-1150
        • Grundy S.M.
        • Stone N.J.
        • Bailey A.L.
        • et al.
        2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        J Am Coll Cardiol. 2019; 73 ([erratum: J Am Coll Cardiol 2019;73:3234–7]): 3168-3209
        • Catapano A.L.
        • Graham I.
        • De Backer G.
        • et al.
        2016 ESC/EAS guidelines for the management of dyslipidaemias.
        Eur Heart J. 2016; 37: 2999-3058
        • Sun C.J.
        • Brisson D.
        • Gaudet D.
        • Ooi T.C.
        Relative effect of hypertriglyceridemia on non-HDLC and apolipoprotein B as cardiovascular disease risk markers.
        J Clin Lipidol. 2020; 14: 825-836
        • Sniderman A.D.
        • Hogue J.-C.
        • Bergeron J.
        • Gagné C.
        • Couture P.
        Non-HDL cholesterol and apoB in dyslipidaemia.
        Clin Sci (Lond). 2008; 114: 149-155
        • Sniderman A.D.
        • St-Pierre A.C.
        • Cantin B.
        • Dagenais G.R.
        • Després J.-P.
        • Lamarche B.
        Concordance/discordance between plasma apolipoprotein B levels and the cholesterol indexes of atherosclerotic risk.
        Am J Cardiol. 2003; 91: 1173-1177
        • Ballantyne C.M.
        • Andrews T.C.
        • Hsia J.A.
        • Kramer J.H.
        • Shear C.
        Correlation of non-high-density lipoprotein cholesterol with apolipoprotein B: Effect of 5 hydroxymethylglutaryl coenzyme A reductase inhibitors on non-high-density lipoprotein cholesterol levels.
        Am J Cardiol. 2001; 88: 265-269
        • Wägner A.M.
        • Pérez A.
        • Zapico E.
        • Ordóñez-Llanos J.
        Non-HDL cholesterol and apolipoprotein B in the dyslipidemic classification of type 2 diabetic patients.
        Diabetes Care. 2003; 26: 2048-2051
        • Leroux G.
        • Lemieux I.
        • Lamarche B.
        • et al.
        Influence of triglyceride concentration on the relationship between lipoprotein cholesterol and apolipoprotein B and A-I levels.
        Metabolism. 2000; 49: 53-61
        • Sniderman A.D.
        Did the ACC/AHA/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA cholesterol guidelines get apoB right?.
        J Clin Lipidol. 2019; 13: 360-366
        • Grundy S.M.
        Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome.
        Am J Cardiol. 1998; 81: 18B-25B
        • Higgins V.
        • Adeli K.
        Postprandial dyslipidemia: Pathophysiology and cardiovascular disease risk assessment.
        eJIFCC. 2017; 28: 168-184
        • Musunuru K.
        Atherogenic dyslipidemia: Cardiovascular risk and dietary intervention.
        Lipids. 2010; 45: 907-914
        • Manoria P.C.
        • Chopra H.K.
        • Parashar S.K.
        • et al.
        The nuances of atherogenic dyslipidemia in diabetes: Focus on triglycerides and current management strategies.
        Indian Heart J. 2013; 65: 683-690
        • Sun C.J.
        • McCudden C.
        • Brisson D.
        • Shaw J.
        • Gaudet D.
        • Ooi T.C.
        Calculated non-HDL cholesterol includes cholesterol in larger triglyceride-rich lipoproteins in hypertriglyceridemia.
        J Endocrine Soc. 2020; 4bvz010
        • Ruel I.
        • Brisson D.
        • Aljenedil S.
        • et al.
        Simplified Canadian definition for familial hypercholesterolemia.
        Can J Cardiol. 2018; 34: 1210-1214
        • Tremblay K.
        • Gaudet D.
        • Khoury E.
        • Brisson D.
        Dissection of clinical and gene expression signatures of familial versus multifactorial chylomicronemia.
        J Endocr Soc. 2020; 15bvaa056
        • Moulin P.
        • Dufour R.
        • Averna M.
        • et al.
        Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an "FCS score.".
        Atherosclerosis. 2018; 275: 265-272
        • Mahley R.W.
        • Rall S.J.
        Type III hyperlipoproteinemia (dysbetalipoproteinemia): The role of apolipoprotein E in normal and abnormal lipoprotein metabolism.
        in: Scriver C.R. The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York2001 (pg. 2835–55)
        • Taylor R.
        Interpretation of the correlation coefficient: A basic review.
        J Diagn Med Sonogr. 1990; 6: 35-39
        • D’Agostino R.
        • Sullivan L.
        • Beiser A.
        Correlation and regression.
        in: Introductory Applied Biostatistics. Brooks/Cole Cengage, Boston2006
        • Barter P.J.
        • Kastelein J.J.
        Targeting cholesteryl ester transfer protein for the prevention and management of cardiovascular disease.
        J Am Coll Cardiol. 2006; 47: 492-499
        • Goldberg I.J.
        Diabetic dyslipidemia: Causes and consequences.
        J Clin Endocrinol Metabol. 2001; 86: 965-971
        • Ginsberg H.N.
        Diabetic dyslipidemia: basic mechanisms underlying the common hypertriglyceridemia and low HDL cholesterol levels.
        Diabetes. 1996; 45: 27-30
        • Sniderman A.D.
        • Couture P.
        • Martin S.S.
        • et al.
        Hypertriglyceridemia and cardiovascular risk: A cautionary note about metabolic confounding.
        J Lipid Res. 2018; 59: 1266-1275
        • Barkas F.
        • Elisaf M.
        • Liberopoulos E.
        • Liontos A.
        • Rizos E.C.
        High triglyceride levels alter the correlation of apolipoprotein B with low- and non-high-density lipoprotein cholesterol mostly in individuals with diabetes or metabolic syndrome.
        Atherosclerosis. 2016; 247: 58-63