Advertisement

Sociodemographic Factors Associated With Objectively Measured Moderate- to Vigorous-intensity Physical Activity in Adults With Type 2 Diabetes: Cross-sectional Results From the Canadian Health Measures Survey (2007 to 2017)

  • Jane E. Booth
    Affiliations
    Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Alexander A. Leung
    Affiliations
    Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

    Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Jamie L. Benham
    Affiliations
    Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

    Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Doreen M. Rabi
    Affiliations
    Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

    Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

    Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Gary S. Goldfield
    Affiliations
    Healthy Active Living and Obesity (HALO) Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Tolulope Sajobi
    Affiliations
    Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Ronald J. Sigal
    Correspondence
    Address for correspondence: Ronald J. Sigal MD, MPH, Division of Endocrinology and Metabolism, RRDTC, 1820 Richmond Road Southwest, Room 1898, Calgary, Alberta T2T 5C7, Canada.
    Affiliations
    Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

    Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

    Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
Published:April 06, 2022DOI:https://doi.org/10.1016/j.jcjd.2022.04.001

      Abstract

      Objectives

      Individuals with type 2 diabetes should engage in ≥150 min of moderate- to vigorous-intensity physical activity (MVPA) weekly, but most do not meet this guideline. Understanding how social determinants correlate with physical activity in adults with type 2 diabetes may improve development and delivery of physical activity interventions. This study aimed to explore associations between objectively measured MVPA with sociodemographic characteristics in adults with type 2 diabetes.

      Methods

      Cross-sectional data from cycles 1 through 5 of the Canadian Health Measures Survey were analyzed. Participants (N=876) 20 to 79 years of age with type 2 diabetes and ≥4 days of valid activity monitor wear were included. Proportions with 95% confidence intervals for objectively measured MVPA were compared according to sociodemographic characteristics. Ordinal logistic regression was used. Secondary outcomes included light-intensity physical activity, screen time and proportion of activity monitor wear time spent sedentary.

      Results

      Only 15.5% of women and 26.2% of men met Diabetes Canada physical activity guidelines, and approximately 75% of activity monitor wear time was spent in a sedentary state. Higher odds of achieving low levels of physical activity were observed among women who were former or current smokers (odds ratio [OR], 4.51; p<0.001), and among men who were ≥65 years of age (OR, 2.92; p<0.001), of middle (OR, 2.20; p<0.05) and lowest (OR, 3.06; p<0.05) income tertiles and current or former smokers (OR, 3.01; p<0.05).

      Conclusions

      Sociodemographic factors are strongly associated with levels of MVPA in adults with type 2 diabetes. Sociodemographic information should be routinely collected by clinicians and used to inform more tailored and effective interventions for this patient population.

      Résumé

      Objectifs

      Les individus atteints du diabète de type 2 devraient faire ≥ 150 min d’activité physique d’intensité modérée à vigoureuse (APMV) par semaine, mais la plupart ne se conforment pas à cette recommandation. La compréhension de la façon dont les déterminants sociaux sont en corrélation avec l’activité physique chez les adultes atteints du diabète de type 2 peut améliorer l’élaboration et la prestation d’interventions en matière d’activité physique. La présente étude visait à explorer les associations entre l’APMV mesurée objectivement et les caractéristiques sociodémographiques chez les adultes atteints du diabète de type 2.

      Méthodes

      Les données transversales recueillies des cycles 1 à 5 de l’Enquête canadienne sur les mesures de la santé ont fait l’objet d’une analyse. Nous avons sélectionné les participants (N = 876) atteints du diabète de type 2 qui avaient de 20 à 79 ans et qui avaient porté ≥ 4 jours un moniteur d’activité valide. Nous avons comparé les pourcentages (intervalles de confiance à 95 %) d’APMV mesurée objectivement selon les caractéristiques sociodémographiques. Nous avons utilisé la régression logistique ordinale. Les critères secondaires étaient l’activité physique d’intensité légère, le temps passé devant un écran et le pourcentage de temps de port du moniteur d’activité passé dans la sédentarité.

      Résultats

      Seulement 15,5 % des femmes et 26,2 % des hommes se conformaient aux recommandations en matière d’activité physique de Diabète Canada, et approximativement 75 % du temps de port du moniteur d’activité physique était passé dans la sédentarité. Nous avons observé une plus grande probabilité d’avoir de faibles niveaux d’activité physique chez les femmes qui étaient d’anciennes fumeuses ou des fumeuses actuelles (rapport de cotes [RC], 4,51; p < 0,001), et chez les hommes qui avaient ≥ 65 ans (RC, 2,92; p < 0,001), étaient dans le tertile de revenu intermédiaire (RC, 2,20; p < 0,05) et le tertile de revenu plus faible (RC, 3,06; p < 0,05), et qui étaient des fumeurs actuels ou d’anciens fumeurs (RC, 3,01; p < 0,05).

      Conclusions

      Les facteurs sociodémographiques sont fortement associés aux niveaux d’APMV chez les adultes atteints du diabète de type 2. Les renseignements sociodémographiques devraient être collectés de façon systématique par les cliniciens et utilisés pour élaborer des interventions plus efficaces et mieux adaptées à cette population de patients.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sigal R.J.
        • Armstrong M.J.
        • Bacon S.L.
        • et al.
        Physical activity and diabetes.
        Can J Diabetes. 2018; 42: 54-63
        • Colberg S.R.
        • Sigal R.J.
        • Yardley J.E.
        • et al.
        Physical activity/exercise and diabetes: A position statement of the American Diabetes Association.
        Diabetes Care. 2016; 39: 2065-2079
        • Healy G.N.
        • Winkler E.A.
        • Brakenridge C.L.
        • et al.
        Accelerometer-derived sedentary and physical activity time in overweight/obese adults with type 2 diabetes: Cross-sectional associations with cardiometabolic biomarkers.
        PLoS One. 2015; 10e0119140
        • Loprinzi P.D.
        • Pariser G.
        Physical activity intensity and biological markers among adults with diabetes: Considerations by age and gender.
        J Diabetes Complications. 2013; 27: 134-140
        • Cichosz S.L.
        • Fleischer J.
        • Hoeyem P.
        • et al.
        Objective measurements of activity patterns in people with newly diagnosed type 2 diabetes demonstrate a sedentary lifestyle.
        Diabet Med. 2013; 30: 1063-1066
        • Camhi S.M.
        • Sisson S.B.
        • Johnson W.D.
        • et al.
        Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health.
        Prev Med. 2011; 52: 358-360
        • Stringhini S.
        • Sabia S.
        • Shipley M.
        • et al.
        Association of socioeconomic position with health behaviors and mortality.
        JAMA. 2010; 303: 1159-1166
        • Lynch J.W.
        • Kaplan G.A.
        • Salonen J.T.
        Why do poor people behave poorly? Variation in adult health behaviours and psychosocial characteristics by stages of the socioeconomic lifecourse.
        Soc Sci Med. 1997; 44: 809-819
        • Nelson K.M.
        • Reiber G.
        • Boyko E.J.
        • et al.
        Diet and exercise among adults with type 2 diabetes: Findings from the Third National Health and Nutrition Examination Survey (NHANES III).
        Diabetes Care. 2002; 25: 1722-1728
        • Plotnikoff R.C.
        • Taylor L.M.
        • Wilson P.M.
        • et al.
        Factors associated with physical activity in Canadian adults with diabetes.
        Med Sci Sports Exerc. 2006; 38: 1526-1534
        • Troiano R.P.
        • Berrigan D.
        • Dodd K.W.
        • et al.
        Physical activity in the United States measured by accelerometer.
        Med Sci Sports Exerc. 2008; 40: 181-188
        • Colley R.C.
        • Butler G.
        • Garriguet D.
        • et al.
        Comparison of self-reported and accelerometer-measured physical activity in Canadian adults.
        Health Rep. 2018; 29: 3-15
        • Day B.
        • Langlois R.
        • Tremblay M.
        • et al.
        Canadian Health Measures Survey: Ethical, legal and social issues.
        Health Rep. 2007; 18: 37-51
        • Statistics Canada
        Canadian Health Measures Survey (CHMS) data user guide: Cycle 3.
        Statistics Canada, Ottawa, Ontario2015
        • Lashen H.
        Role of metformin in the management of polycystic ovary syndrome.
        Ther Adv Endocrinol Metab. 2010; 1: 117-128
        • Hostalek U.
        • Gwilt M.
        • Hildemann S.
        Therapeutic use of metformin in prediabetes and diabetes prevention.
        Drugs. 2015; 75: 1071-1094
        • Tremblay M.S.
        • Connor Gorber S.
        Canadian Health Measures Survey: Brief overview.
        Can J Public Health. 2007; 98: 453-456
        • Colley R.C.
        • Tremblay M.S.
        Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer.
        J Sports Sci. 2011; 29: 783-789
        • Statistics Canada
        Canadian Health Measures Survey (CHMS) data user guide: Cycle 5.
        Statistics Canada, Ottawa, Ontario2019
        • Statistics Canada.
        Low income lines, 2008-2009. Ottawa: Statistics Canada, 2010 (2010.) (Accessed January, 2020)
        • Statistics Canada
        Mitigation of risk to respondents of Statistics Canada’s Surveys.
        Statistics Canada, Ottawa, ON2010 (2010.) (Accessed July, 2019)
        • Brant R.
        Assessing proportionality in the proportional odds model for ordinal logistic regression.
        Biometrics. 1990; 46: 1171-1178
        • von Elm E.
        • Altman D.G.
        • Egger M.
        • et al.
        Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies.
        BMJ. 2007; 335: 806-808
        • Statistics Canada
        Canadian Health Measures Survey (CHMS) data user guide: Cycle 1.
        Statistics Canada, Ottawa, Ontario2010
        • Statistics Canada
        Canadian Health Measures Survey (CHMS) data user guide: Cycle 2.
        Statistics Canada, Ottawa, Ontario2013
        • Statistics Canada
        Canadian Health Measures Survey (CHMS) data user guide: Cycle 4.
        Statistics Canada, Ottawa, Ontario2017
        • Plotnikoff R.C.
        • Johnson S.T.
        • Loucaides C.A.
        • et al.
        Population-based estimates of physical activity for adults with type 2 diabetes: A cautionary tale of potential confounding by weight status.
        J Obes. 2011; 2011
        • Clarke J.
        • Colley R.
        • Janssen I.
        • et al.
        Accelerometer-measured moderate-to-vigorous physical activity of Canadian adults, 2007 to 2017.
        Health Rep. 2019; 30: 3-10
        • Welch W.A.
        • Alexander N.B.
        • Swartz A.M.
        • et al.
        Individualized estimation of physical activity in older adults with type 2 diabetes.
        Med Sci Sports Exerc. 2017; 49: 2185-2190
        • Evenson K.R.
        • Catellier D.J.
        • Gill K.
        • et al.
        Calibration of two objective measures of physical activity for children.
        J Sports Sci. 2008; 26: 1557-1565
        • Puyau M.R.
        • Adolph A.L.
        • Vohra F.A.
        • et al.
        Prediction of activity energy expenditure using accelerometers in children.
        Med Sci Sports Exerc. 2004; 36: 1625-1631
        • Hill J.
        • Nielsen M.
        • Fox M.H.
        Understanding the social factors that contribute to diabetes: A means to informing health care and social policies for the chronically ill.
        Perm J. 2013; 17: 67-72
        • Hill-Briggs F.
        • Adler N.E.
        • Berkowitz S.A.
        • et al.
        Social determinants of health and diabetes: A scientific review.
        Diabetes Care. 2021; 44: 258-279
        • Daniel H.
        • Bornstein S.S.
        • Kane G.C.
        • et al.
        Addressing social determinants to improve patient care and promote health equity: An American College of Physicians Position Paper.
        Ann Intern Med. 2018; 168: 577-578
        • Gold R.
        • Bunce A.
        • Cowburn S.
        • et al.
        Adoption of social determinants of health EHR tools by community health centers.
        Ann Fam Med. 2018; 16: 399-407
        • Taylor L.A.
        • Tan A.X.
        • Coyle C.E.
        • et al.
        Leveraging the social determinants of health: What works?.
        PLoS One. 2016; 11e0160217
        • Morrin L.
        • Britten J.
        • Davachi S.
        • et al.
        Alberta Healthy Living Program: A model for successful integration of chronic disease management services.
        Can J Diabetes. 2013; 37: 254-259
        • Rosella L.C.
        • Mustard C.A.
        • Stukel T.A.
        • et al.
        The role of ethnicity in predicting diabetes risk at the population level.
        Ethn Health. 2012; 17: 419-437
        • Crowshoe L.
        • Dannenbaum D.
        • Green M.
        • et al.
        Type 2 diabetes and indigenous peoples.
        Can J Diabetes. 2018; 42: 296-306
        • Williams D.R.
        • Lawrence J.A.
        • Davis B.A.
        • et al.
        Understanding how discrimination can affect health.
        Health Serv Res. 2019; 54: 1374-1388
        • The Lancet Public Health
        Time to tackle the physical activity gender gap.
        Lancet Public Health. 2019; 4e360
        • Edwards E.S.
        • Sackett S.C.
        Psychosocial variables related to why women are less active than men and related health implications.
        Clin Med Insights Womens Health. 2016; 9: 47-56
        • Esliger D.W.
        • Copeland J.L.
        • Barnes J.D.
        • et al.
        Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring.
        J Phys Act Health. 2005; 3: 366-383
        • Public Health Agency of Canada
        Diabetes in Canada: Facts and figures from a public health perspective. Public Health Agency of Canada, Ottawa2011