Advertisement

Association Between Gut Microbiota and Insulin Therapy in Women With Gestational Diabetes Mellitus

  • Lingling Huang
    Affiliations
    Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

    Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand

    School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
    Search for articles by this author
  • Palin Sililas
    Affiliations
    Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
    Search for articles by this author
  • Chanisa Thonusin
    Affiliations
    Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

    Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand

    Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
    Search for articles by this author
  • Theera Tongsong
    Affiliations
    Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
    Search for articles by this author
  • Suchaya Luewan
    Affiliations
    Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
    Search for articles by this author
  • Nipon Chattipakorn
    Affiliations
    Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

    Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand

    Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
    Search for articles by this author
  • Siriporn C. Chattipakorn
    Correspondence
    Address for correspondence: Siriporn C. Chattipakorn DDS, PhD, Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
    Affiliations
    Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

    Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand

    Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
    Search for articles by this author

      Abstract

      Objectives

      At the time of diagnosis, the blood glucose of women with gestational diabetes mellitus (GDM) who require subsequent insulin treatment does not differ from that of women with adequate diet control. Hence, in this study, we aimed to determine the role of maternal gut microbiota as a marker of insulin necessity in GDM and to identify the effect of insulin therapy on gut microbiota composition in GDM mothers and their newborns.

      Methods

      Seventy-one pregnant women were enrolled onto the study, including 38 GDM and 33 non-GDM participants. During the follow-up period, 8 of the 38 GDM subjects required insulin therapy (GDM-I group), whereas 30 of the 38 GDM cases with sufficient glycemic control by diet alone (GDM-D group). Maternal blood and feces were obtained at the time of GDM diagnosis (pretreatment; 24 to 28 weeks of gestation) and before delivery (posttreatment; ≥37 weeks of gestation). Meconium and first feces of the newborns were also collected.

      Results

      Pretreatment, the glycemic profile did not differ between the GDM-D and GDM-I groups. However, the proportions of Clostridiales, Lactobacillus and Bacteroidetes were higher in the GDM-I group than in the non-GDM and GDM-D groups. After treatment, gut microbiota composition showed no difference between non-GDM and GDM-I groups. Interestingly, a higher Firmicutes/Bacteroidetes (F/B) ratio was displayed in GDM-D mothers at posttreatment, and this was also observed in both meconium and first feces of GDM-D newborns.

      Conclusion

      Insulin therapy changed maternal gut microbiota composition, which could be transferable to the mothers’ newborns.

      Résumé

      Objectifs

      Au moment du diagnostic, la glycémie des femmes atteintes d’un diabète sucré gestationnel (DSG) qui ont besoin d’une insulinothérapie subséquente ne diffère pas de celle des femmes qui ont un bon régime alimentaire. Par conséquent, dans la présente étude, nous avions pour objectif de déterminer si le microbiote intestinal maternel joue le rôle de marqueur des besoins en insuline lors de DSG et de cerner les effets de l’insulinothérapie sur la composition du microbiote intestinal des mères atteintes du DSG et de leurs nouveau-nés.

      Méthodes

      Nous avons inscrit 71 femmes enceintes à l’étude, à savoir 38 participantes atteintes du DSG et 33 participantes non atteintes du DSG. Durant la période de suivi, 8 des 37 sujettes atteintes du DSG ont eu besoin de l’insulinothérapie (groupe DSG-I), alors que, grâce au régime alimentaire seul (groupe DSG-R), la glycémie de 30 des 38 cas atteints du DSG a bien été maîtrisée. Nous avons obtenu le sang et les selles maternelles au moment du diagnostic du DSG (prétraitement; 24 à 28 semaines de grossesse) et avant l’accouchement (post-traitement; ≥ 37 semaines de grossesse). Nous avons également collecté le méconium et les premières selles des nouveau-nés.

      Résultats

      Avant le traitement, le bilan glycémique ne différait pas entre le groupe DSG-R et le groupe DSG-I. Toutefois, les pourcentages de Clostridiales, de Lactobacillus et de Bacteroidetes étaient plus élevés au sein du groupe DSG-I qu’au sein du groupe DSG-R. Après le traitement, la composition du microbiote intestinal ne montrait aucune différence entre le groupe sans DSG et le groupe DSG-I. De façon intéressante, nous avons observé que les mères atteintes du DSG-R montraient un ratio de Firmicutes/Bacteroidetes (F/B) plus élevé après le traitement, et ce, dans le méconium et les premières selles des nouveau-nés des mères atteintes du DSG-R.

      Conclusion

      La composition du microbiote intestinal maternel modifiée par l’insulinothérapie pourrait être transmise aux nouveau-nés des mères.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Diabetes Association
        Gestational diabetes mellitus.
        Diabetes Care. 2003; 26: S103-S105
        • McIntyre H.D.
        • Catalano P.
        • Zhang C.
        • Desoye G.
        • Mathiesen E.R.
        • Damm P.
        Gestational diabetes mellitus.
        Nat Rev Dis Primers. 2019; 5: 47
        • Baz B.
        • Riveline J.P.
        • Gautier J.F.
        Endocrinology of pregnancy: Gestational diabetes mellitus: Definition, aetiological and clinical aspects.
        Eur J Endocrinol. 2016; 174: R43-R51
        • Brown J.
        • Alwan N.A.
        • West J.
        • et al.
        Lifestyle interventions for the treatment of women with gestational diabetes.
        Cochrane Database Syst Rev. 2017; 5: CD011970
        • Kuang Y.S.
        • Lu J.H.
        • Li S.H.
        • et al.
        Connections between the human gut microbiome and gestational diabetes mellitus.
        Gigascience. 2017; 6: 1-12
        • Liu H.
        • Pan L.L.
        • Lv S.
        • et al.
        Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia.
        Front Physiol. 2019; 10: 1015
        • Wu Y.
        • Bible P.W.
        • Long S.
        • et al.
        Metagenomic analysis reveals gestational diabetes mellitus-related microbial regulators of glucose tolerance.
        Acta Diabetol. 2020; 57: 569-581
        • Ye G.
        • Zhang L.
        • Wang M.
        • et al.
        The gut microbiota in women suffering from gestational diabetes mellitus with the failure of glycemic control by lifestyle modification.
        J Diabetes Res. 2019; 2019: 6081248
        • American College of Obstetricians and Gynecologists
        ACOG Practice Bulletin No. 190: Gestational diabetes mellitus.
        Obstet Gynecol. 2018; 131: e49-e64
        • Subiabre M.
        • Silva L.
        • Toledo F.
        • et al.
        Insulin therapy and its consequences for the mother, foetus, and newborn in gestational diabetes mellitus.
        Biochim Biophys Acta Mol Basis Dis. 2018; 1864: 2949-2956
        • Wang H.
        • Tang W.
        • Zhang P.
        • et al.
        Modulation of gut microbiota contributes to effects of intensive insulin therapy on intestinal morphological alteration in high-fat-diet-treated mice.
        Acta Diabetol. 2020; 57: 455-467
        • Crusell M.K.W.
        • Hansen T.H.
        • Nielsen T.
        • et al.
        Comparative studies of the gut microbiota in the offspring of mothers with and without gestational diabetes.
        Front Cell Infect Microbiol. 2020; 10: 536282
        • Soderborg T.K.
        • Carpenter C.M.
        • Janssen R.C.
        • et al.
        Gestational diabetes is uniquely associated with altered early seeding of the infant gut microbiota.
        Front Endocrinol (Lausanne). 2020; 11: 603021
        • Wang J.
        • Zheng J.
        • Shi W.
        • et al.
        Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus.
        Gut. 2018; 67: 1614-1625
        • Ponzo V.
        • Ferrocino I.
        • Zarovska A.
        • et al.
        The microbiota composition of the offspring of patients with gestational diabetes mellitus (GDM).
        PLoS One. 2019; 14e0226545
        • Hod M.
        • Kapur A.
        • Sacks D.A.
        • et al.
        The International Federation of Gynecology and Obstetrics (FIGO) initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care.
        Int J Gynaecol Obstet. 2015; 131: S173-S211
        • American Diabetes Association
        14. Management of diabetes in pregnancy: Standards of medical care in diabetes---2021.
        Diabetes Care. 2021; 44: S200-S210
        • American Diabetes Association
        (2) Classification and diagnosis of diabetes.
        Diabetes Care. 2015; 38: S8-S16
        • Crusell M.K.W.
        • Hansen T.H.
        • Nielsen T.
        • et al.
        Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum.
        Microbiome. 2018; 6: 89
        • Ferrocino I.
        • Ponzo V.
        • Gambino R.
        • et al.
        Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM).
        Sci Rep. 2018; 8: 12216
        • Thiennimitr P.
        • Yasom S.
        • Tunapong W.
        • et al.
        Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats.
        Nutrition. 2018; 54: 40-47
        • Winter S.E.
        • Thiennimitr P.
        • Winter M.G.
        • et al.
        Gut inflammation provides a respiratory electron acceptor for Salmonella.
        Nature. 2010; 467: 426-429
        • Wei J.
        • Qing Y.
        • Zhou H.
        • Liu J.
        • Qi C.
        • Gao J.
        16S rRNA gene amplicon sequencing of gut microbiota in gestational diabetes mellitus and their correlation with disease risk factors.
        J Endocrinol Invest. 2022; 45: 279-289
        • Rajilic-Stojanovic M.
        • Vos D.W.M.
        The first 1000 cultured species of the human gastrointestinal microbiota.
        FEMS Microbiol Rev. 2014; 38: 996-1047
        • Wirth R.
        • Bodi N.
        • Maroti G.
        • et al.
        Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induced diabetes.
        PLoS One. 2014; 9e110440
        • Li H.
        • Shi J.
        • Zhao L.
        • et al.
        Lactobacillus plantarum KLDS1.0344 and Lactobacillus acidophilus KLDS1.0901 mixture prevents chronic alcoholic liver injury in mice by protecting the intestinal barrier and regulating gut microbiota and liver-related pathways.
        J Agric Food Chem. 2021; 69: 183-197
        • Liu J.
        • Li T.
        • Wu H.
        • et al.
        Lactobacillus rhamnosus GG strain mitigated the development of obstructive sleep apnea-induced hypertension in a high salt diet via regulating TMAO level and CD4(+) T cell induced-type I inflammation.
        Biomed Pharmacother. 2019; 112: 108580
        • Jang H.M.
        • Han S.K.
        • Kim J.K.
        • Oh S.J.
        • Jang H.B.
        • Kim D.H.
        Lactobacillus sakei alleviates high-fat-diet-induced obesity and anxiety in mice by inducing AMPK activation and SIRT1 expression and inhibiting gut microbiota-mediated NF-kappaB activation.
        Mol Nutr Food Res. 2019; 63e1800978
        • Karamali M.
        • Dadkhah F.
        • Sadrkhanlou M.
        • et al.
        Effects of probiotic supplementation on glycaemic control and lipid profiles in gestational diabetes: A randomized, double-blind, placebo-controlled trial.
        Diabetes Metab. 2016; 42: 234-241
        • Babadi M.
        • Khorshidi A.
        • Aghadavood E.
        • et al.
        The effects of probiotic supplementation on genetic and metabolic profiles in patients with gestational diabetes mellitus: A randomized, double-blind, placebo-controlled trial.
        Probiotics Antimicrob Proteins. 2019; 11: 1227-1235
        • Ding Y.H.
        • Qian L.Y.
        • Pang J.
        • et al.
        The regulation of immune cells by Lactobacilli: A potential therapeutic target for anti-atherosclerosis therapy.
        Oncotarget. 2017; 8: 59915-59928
        • Chen F.
        • Gan Y.
        • Li Y.
        • et al.
        Association of gestational diabetes mellitus with changes in gut microbiota composition at the species level.
        BMC Microbiol. 2021; 21: 147
        • Parada Venegas D.
        • De la Fuente M.K.
        • Landskron G.
        • et al.
        Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases.
        Front Immunol. 2019; 10: 277
        • Rajilic-Stojanovic M.
        Function of the microbiota.
        Best Pract Res Clin Gastroenterol. 2013; 27: 5-16
        • Tang W.
        • Yao X.
        • Xia F.
        • et al.
        Modulation of the gut microbiota in rats by hugan qingzhi tablets during the treatment of high-fat-diet-induced nonalcoholic fatty liver disease.
        Oxid Med Cell Longev. 2018; 2018: 7261619
        • Parnell J.A.
        • Reimer R.A.
        Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome.
        Gut Microbes. 2012; 3: 29-34
        • Pascale A.
        • Marchesi N.
        • Govoni S.
        • Coppola A.
        • Gazzaruso C.
        The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: New insights into old diseases.
        Curr Opin Pharmacol. 2019; 49: 1-5
        • Zheng W.
        • Xu Q.
        • Huang W.
        • et al.
        Gestational diabetes mellitus is associated with reduced dynamics of gut microbiota during the first half of pregnancy.
        Msystems. 2020; 5
        • Satokari R.
        High intake of sugar and the balance between pro- and anti-Inflammatory gut bacteria.
        Nutrients. 2020; 12: 1348
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature. 2013; 500: 541-546
        • Chu D.M.
        • Ma J.
        • Prince A.L.
        • Antony K.M.
        • Seferovic M.D.
        • Aagaard K.M.
        Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery.
        Nat Med. 2017; 23: 314-326
        • Kozyrskyj A.L.
        • Kalu R.
        • Koleva P.T.
        • Bridgman S.L.
        Fetal programming of overweight through the microbiome: Boys are disproportionately affected.
        J Dev Orig Health Dis. 2016; 7: 25-34
        • Mueller N.T.
        • Bakacs E.
        • Combellick J.
        • Grigoryan Z.
        • Dominguez-Bello M.G.
        The infant microbiome development: Mom matters.
        Trends Mol Med. 2015; 21: 109-117
        • Dannecker C.
        • Wagner R.
        • Peter A.
        • et al.
        Low-density lipoprotein cholesterol is associated with insulin secretion.
        J Clin Endocrinol Metab. 2021; 106: 1576-1584
        • Eppel D.
        • Feichtinger M.
        • Lindner T.
        • et al.
        Association between maternal triglycerides and disturbed glucose metabolism in pregnancy.
        Acta Diabetol. 2021; 58: 459-465
        • Barat S.
        • Ghanbarpour A.
        • Bouzari Z.
        • Batebi Z.
        Triglyceride to HDL cholesterol ratio and risk for gestational diabetes and birth of a large-for-gestational-age newborn.
        Caspian J Intern Med. 2018; 9: 368-375