Advertisement

A Multimodal Intervention for Reducing Unnecessary Repeat Glycated Hemoglobin Testing

      Abstract

      Objectives

      Reducing unnecessary tests that do not enhance quality can promote health-care value. Glycated hemoglobin (A1C) is often ordered at a frequency exceeding the recommendation of once every 3 months. We conducted a quality improvement (QI) initiative aimed to reduce unnecessary repeat testing by 75% at a tertiary care academic hospital.

      Methods

      A retrospective baseline analysis was conducted on laboratory data from 2019 that enumerated unnecessary A1C tests, defined as repeat tests ordered within 60 days. A multifaceted change intervention with iterative plan–do–study–act cycles was introduced in March 2019 to educate providers and to automatically cancel A1C tests requested within 60 days. Monthly totals of A1C testing processed were plotted on statistical process control charts.

      Results

      In 2019, 11% of all A1C tests ordered were unnecessary. Between March 2020 and January 2021, 11% of the tests (N=14,247 tests) were unnecessary, of which 84% were cancelled with our intervention. Providers in cardiology and nephrology accounted for over half (55%) of the unnecessary tests ordered.

      Conclusions

      A 2-pronged approach informed by root-cause analysis, and comprised of gatekeeping and provider education, can effectively promote resource stewardship for reducing unnecessary A1C testing.

      Résumé

      Objectifs

      La diminution des analyses superflues qui ne permettent pas d’améliorer la qualité peut contribuer à promouvoir la valeur des soins de santé. La fréquence des ordonnances d’analyses de l’hémoglobine glyquée (A1c) excède souvent la recommandation de 1 analyse tous les 3 mois. Nous avons mené un projet d’amélioration de la qualité (AQ) qui visait à réduire de 75 % les analyses superflues d’un hôpital universitaire de soins tertiaires.

      Méthodes

      À compter de 2019, nous avons mené une première analyse rétrospective des données de laboratoire qui énumérait les analyses superflues de l’A1c, à savoir les analyses répétées prescrites dans les 60 jours. En mars 2019, nous avons offert une intervention à multiples facettes pour tester les changements au moyen des cycles plan–do–study–act (PDSA) répétés afin d’informer les prestataires et d’annuler automatiquement les analyses d’A1c demandées dans les 60 jours. Nous avons représenté les totaux mensuels des analyses de l’A1c traitées sur des graphiques de maîtrise statistique des procédés.

      Résultats

      En 2019, 11 % de toutes les analyses de l’A1c prescrites étaient superflues. Entre mars 2020 et janvier 2021, parmi les 11 % d’analyses (n = 14 247 analyses) qui étaient superflues, 84 % ont été annulées grâce à notre intervention. Les prestataires en cardiologie et en néphrologie réalisaient plus de la moitié (55 %) des ordonnances d’analyses superflues.

      Conclusions

      Une approche à 2 volets fondée sur une analyse des causes fondamentales et constituée de contrôle de l’accès et d’enseignement aux prestataires peut promouvoir efficacement la gestion des ressources afin de réduire les analyses superflues de l’A1c.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berard L.D.
        • Siemens R.
        • Woo V.
        Monitoring glycemic control.
        Can J Diabetes. 2018; 42: S47-S53
        • McCoy R.G.
        • Van Houten H.K.
        • Ross J.S.
        • et al.
        HbA1c overtesting and overtreatment among US adults with controlled type 2 diabetes, 2001–13: Observational population based study.
        BMJ. 2015; 351: 1-10
        • Janssens P.M.W.
        • Wasser G.
        Managing laboratory test ordering through test frequency filtering.
        Clin Chem Lab Med. 2013; 51: 1207-1215
        • Akan P.
        • Cimrin D.
        • Ormen M.
        • et al.
        The inappropriate use of HbA1c testing to monitor glycemia: Is there evidence in laboratory data?.
        J Eval Clin Pract. 2007; 13: 21-24
        • Laxmisan A.
        • Vaughan-Sarrazin M.
        • Cram P.
        Repeated hemoglobin A1C ordering in the VA health system.
        Am J Med. 2011; 124: 342-349
        • Lyon A.W.
        • Higgins T.
        • Wesenberg J.C.
        • et al.
        Variation in the frequency of hemoglobin A1c (HbA1c) testing: Population studies used to assess compliance with clinical practice guidelines and use of HbA1c to screen for diabetes.
        J Diabetes Sci Technol. 2009; 3: 411-417
        • Chami N.
        • Simons J.E.
        • Sweetman A.
        • et al.
        Rates of inappropriate laboratory test utilization in Ontario.
        Clin Biochem. 2017; 50: 822-827
        • Hueth K.D.
        • Jackson B.R.
        • Schmidt R.L.
        An audit of repeat testing at an academic medical center.
        Am J Clin Pathol. 2018; 150: 27-33
        • Naugler C.
        • Wyonch R.
        What the doctor ordered: Improving the use and value of laboratory testing.
        C.D. Howe Institute Commentary. 2019; 533: 28
        • Ma I.
        • Guo M.
        • Viczko J.
        • et al.
        Evaluation of a provincial intervention to reduce redundant hemoglobin A1c testing.
        Clin Biochem. 2017; 50: 1253-1255
        • Bejjanki H.
        • Mramba L.K.
        • Beal S.G.
        • et al.
        The role of a best practice alert in the electronic medical record in reducing repetitive lab tests.
        Clin Outcomes Res. 2018; 10: 611-618
        • Ministry of Health of Ontario
        Schedule of Benefits for Laboratory Services 1999.
        2020
        • Smit I.
        • Zemlin A.E.
        • Erasmus R.T.
        Demand management: An audit of chemical pathology test rejections by an electronic gate-keeping system at an academic hospital in Cape Town.
        Ann Clin Biochem. 2015; 52: 481-487
        • Bindraban R.S.
        • ten Berg M.J.
        • Naaktgeboren C.A.
        • et al.
        Reducing test utilization in hospital settings: A narrative review.
        Ann Lab Med. 2018; 38: 402-412
        • Soong C.
        • Shojania K.G.
        Education as a low-value improvement intervention: Often necessary but rarely sufficient.
        BMJ Qual Saf. 2020; 29: 353-357
        • Tricco A.C.
        • Ivers N.M.
        • Grimshaw J.M.
        • et al.
        Effectiveness of quality improvement strategies on the management of diabetes: A systematic review and meta-analysis.
        Lancet. 2012; 379: 2252-2261