Advertisement

Sex-dependent Effect of In-utero Exposure to Δ9-Tetrahydrocannabinol on Glucagon and Stathmin-2 in Adult Rat Offspring

  • Farzad Asadi
    Affiliations
    Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

    Lawson Health Research Institute, London, Ontario, Canada
    Search for articles by this author
  • Juan Andres Fernandez Andrade
    Affiliations
    Lawson Health Research Institute, London, Ontario, Canada

    Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
    Search for articles by this author
  • Ryan Gillies
    Affiliations
    Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

    Lawson Health Research Institute, London, Ontario, Canada
    Search for articles by this author
  • Kendrick Lee
    Affiliations
    Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

    Department of Obstetrics and Gynecology Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
    Search for articles by this author
  • Savita Dhanvantari
    Affiliations
    Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

    Lawson Health Research Institute, London, Ontario, Canada

    Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
    Search for articles by this author
  • Daniel Barry Hardy
    Affiliations
    Lawson Health Research Institute, London, Ontario, Canada

    Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

    Department of Obstetrics and Gynecology Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
    Search for articles by this author
  • Edith Juliana Arany
    Correspondence
    Address correspondence to: Edith Juliana Arany MD, PhD, Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.
    Affiliations
    Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

    Lawson Health Research Institute, London, Ontario, Canada
    Search for articles by this author

      Abstract

      Objectives

      Administration of Δ9-tetrahydrocannabinol (Δ9-THC) to pregnant rats results in glucose intolerance, insulin resistance and reduced islet mass in female, but not male, offspring. The effects of Δ9-THC on other islet hormones is not known. One downstream target of the cannabinoid receptor, stathmin-2 (Stmn2), has recently been shown to suppress glucagon secretion, thereby suggesting Δ9-THC may also affect alpha-cell function. The aim of the present study was to determine the effects of in-utero Δ9-THC exposure on the profile of glucagon, insulin and Stmn2 in the rat offspring islet and serum.

      Methods

      Pregnant Wistar rat dams were injected with Δ9-THC (3 mg/kg per day, intraperitoneally) or vehicle from gestational day 6 to birth. Offspring were euthanized at postnatal day 21 (PND21) or at 5 months (adult) to collect blood and pancreata.

      Results

      At PND21, control and Δ9-THC–exposed offspring showed that Stmn2 had a strong colocalization with glucagon (Pearson’s correlation coefficient ≥0.6), and a weak colocalization with insulin (Pearson’s correlation coefficient <0.4) in both males and females, with no changes by either treatment or sex. In adult female offspring in the Δ9-THC group, intensity analysis indicated an increased insulin-to-glucagon (I/G; p<0.05) ratio and a decreased glucagon-to-Stmn2 (G/S; p<0.01) ratio, and no changes in these ratios in adult males. Furthermore, Δ9-THC did not alter fasting blood glucose and serum insulin levels in either male or female adult offspring. However, female Δ9-THC–exposed offspring exhibited an increased I/G ratio (p<0.05) and decreased G/S ratio in serum by adulthood (p<0.05).

      Conclusion

      Collectively, the reduced G/S ratio in both islet and serum in association with an increased serum I/G ratio has direct correlations with early glucose intolerance and insulin resistance observed exclusively in females’ offspring in this prenatal cannabinoid model.

      Résumé

      Objectifs

      L’administration de Δ9-tétrahydrocannabinol (Δ9-THC) aux rates gestantes entraîne une intolérance au glucose, une résistance à l’insuline et contribue à réduire la masse d’îlots de la progéniture femelle, mais non de la progéniture mâle. On ignore les effets du Δ9-THC sur les autres hormones produites par les îlots. Il a été récemment démontré que l’une des cibles en aval des récepteurs cannabinoïdes, la stathmine-2 (STMN2), supprime la sécrétion de glucagon, ce qui laisse ainsi croire que le Δ9-THC peut aussi avoir une incidence sur le fonctionnement des cellules alpha. L’objectif de la présente étude était de déterminer les effets de l’exposition in utero au Δ9-THC sur le profil du glucagon, de l’insuline et de la STMN2 dans les îlots et le sérum de la progéniture des rates.

      Méthodes

      Nous avons injecté du Δ9-THC (3 mg/kg par jour, par voie intrapéritonéale) ou un véhicule aux mères rates gestantes Wistar du 6e jour de la gestation à la naissance. Nous avons euthanasié la progéniture au 21e jour après la naissance (21JAN) ou à 5 mois (adultes) pour prélever le sang et les pancréas.

      Résultats

      Au 21JAN, les témoins et la progéniture exposée au Δ9-THC montraient que la STMN2 avait une forte colocalisation avec le glucagon (coefficient de corrélation de Pearson ≥ 0,6) et une faible colocalisation avec l’insuline (coefficient de corrélation de Pearson < 0,4) chez les mâles et les femelles, sans aucun changement selon le traitement ou le sexe. Chez la progéniture femelle adulte du groupe de Δ9-THC, l’analyse de l’intensité montrait une élévation du ratio insuline/glucagon (I/G; p < 0,05) et une diminution du ratio glucagon/STMN2 (G/S; p < 0,01), mais aucun changement dans ces ratios chez la progéniture mâle adulte. De plus, le Δ9-THC ne contribuait pas à la modification des concentrations de la glycémie à jeun et des concentrations sériques de l’insuline, quelle que soit la progéniture adulte, mâle ou femelle. Toutefois, la progéniture femelle exposée au Δ9-THC montrait une élévation du ratio I/G (p < 0,05) et une diminution du ratio G/S dans le sérum à l’âge adulte (p < 0,05).

      Conclusion

      En association, la réduction du ratio G/S dans les îlots et le sérum, et l’augmentation du ratio I/G dans le sérum ont des corrélations directes avec l’intolérance au glucose et la résistance à l’insuline de survenue précoce observées exclusivement chez la progéniture femelle dans ce modèle sur l’exposition prénatale aux cannabinoïdes.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vidot D.C.
        • Prado G.
        • Hlaing W.M.
        • Florez H.J.
        • Arheart K.L.
        • Messiah S.E.
        Metabolic syndrome among marijuana users in the United States: An analysis of national health and nutrition examination survey data.
        Am J Med. 2017; 129: 173-179
        • Jaques S.C.
        • Kingsbury A.
        • Henshcke P.
        • et al.
        Cannabis, the pregnant woman and her child: Weeding out the myths.
        J Perinatol. 2014; 34: 417-424
        • Lee K.
        • Hardy D.B.
        Metabolic consequences of gestational cannabinoid exposure.
        Int J Mol Sci. 2021; 22: 9528
        • Hayatbakhsh M.R.
        • O’Callaghan M.J.
        • Mamun A.A.
        • Williams G.M.
        • Clavarino A.
        • Najman J.M.
        Cannabis use and obesity and young adults.
        Am J Drug Alcohol Abuse. 2010; 36: 350-356
        • Moore B.F.
        • Sauder K.A.
        • Shapiro A.L.B.
        • Crume T.
        • Kinney G.L.
        Fetal exposure to cannabis and childhood metabolic outcomes: The Healthy Start study.
        J Clin Endocrinol Metab. 2022; 107: e2862-e2869
        • Gillies R.
        • Lee K.
        • Vanin S.
        • et al.
        Maternal exposure to Δ9-tetrahydrocannabinol impairs female offspring glucose homeostasis and endocrine pancreatic development in the rat.
        Reprod Toxicol. 2020; 94: 84-91
        • Natale B.V.
        • Gustin K.N.
        • Lee K.
        • et al.
        Δ9-Tetrahydrocannabinol exposure during rat pregnancy leads to symmetrical fetal growth restriction and labyrinth-specific vascular defects in the placenta.
        Sci Rep. 2020; 10: 544
        • Oke S.L.
        • Lee K.
        • Papp R.
        • Laviolette S.R.
        • Hardy D.B.
        In utero exposure to Δ9-tetrahydrocannabinol leads to postnatal catch-up growth and dysmetabolism in the adult rat liver.
        Int J Mol Sci. 2021; 22: 7502
        • Lee K.
        • Laviolette S.R.
        • Hardy D.B.
        Exposure to Δ9-tetrahydrocannabinol during rat pregnancy leads to impaired cardiac dysfunction in postnatal life.
        Pediatr Res. 2021; 90: 532-539
        • Martínez-Peña A.A.
        • Lee K.
        • Petrik J.J.
        • Hardy D.B.
        • Holloway A.C.
        Gestational exposure to Δ9-THC impacts ovarian follicular dynamics and angiogenesis in adulthood in Wistar rats.
        J Dev Orig Heal Dis. 2021; 12: 865-869
        • Unger R.H.
        • Cherrington A.D.
        Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover.
        J Clin Invest. 2012; 122: 4-12
        • Asadi F.
        • Dhanvantari S.
        Plasticity in the glucagon interactome reveals proteins that regulate glucagon secretion in alpha TC1-6 cells.
        Front Endocrinol. 2019; 9: 792
        • Asadi F.
        • Dhanvantari S.
        Stathmin-2 mediates glucagon secretion from pancreatic α-cells.
        Front Endocrinol. 2020; 11: 29
        • Asadi F.
        • Dhanvantari S.
        Misrouting of glucagon and stathmin-2 towards lysosomal system of α-cells in glucagon hypersecretion of diabetes.
        Islets. 2022; 14: 40-57
        • Charbaut E.
        • Chauvin S.
        • Enslen H.
        • Zamaroczy S.
        • Sobel A.
        Two separate motifs cooperate to target stathmin-related proteins to the Golgi complex.
        J Cell Sci. 2005; 118: 2313-2323
        • Benarroch E.
        What is the role of stathmin-2 in axonal biology and degeneration?.
        Neurology. 2021; 97: 330-333
        • Mahapatra N.R.
        • Taupenot L.
        • Courel M.
        • Mahata S.K.
        • O’Connor D.T.
        The trans-Golgi proteins SCLIP and SCG10 interact with chromogranin A to regulate neuroendocrine secretion.
        Biochemistry. 2008; 47: 7167-7178
        • Bramswig N.
        • Everett L.
        • Schug J.
        • et al.
        Epigenomic plasticity enables human pancreatic alpha to beta cell reprogramming.
        J Clin Invest. 2013; 123: 1275-1284
        • Lawlor N.
        • George J.
        • Bolisetty M.
        • et al.
        Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes.
        Genome Res. 2017; 27: 208-222
        • Lawlor N.
        • Youn A.
        • Kursawe R.
        • Ucar D.
        • Stitzel M.L.
        Alpha TC1 and beta-TC-6 genomic profiling uncovers both shared and distinct transcriptional regulatory features with their primary islet counterparts.
        Sci Rep. 2017; 7: 1-14
        • Tortoriello G.
        • Morris C.V.
        • Alpar A.
        • et al.
        Miswiring the brain: D9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10 / stathmin-2 degradation pathway.
        EMBO J. 2014; 33 (65): 668
        • Bermúdez-Silva F.J.
        • Suárez J.
        • Baixeras E.
        • et al.
        Presence of functional cannabinoid receptors in human endocrine pancreas.
        Diabetologia. 2008; 51: 476-487
        • Malenczyk K.
        • Keimpema E.
        • Piscitelli F.
        • et al.
        Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture.
        Proc Natl Acad Sci USA. 2015; 112: E6185-E6194
        • Schwope D.M.
        • Karschner E.L.
        • Gorelick D.A.
        • Huestis M.A.
        Identification of recent cannabis use: Whole-blood and plasma free and glucuronidated cannabinoid pharmacokinetics following controlled smoked cannabis administration.
        Clin Chem. 2011; 57: 1406-1414
        • Falcon M.
        • Pichini S.
        • Joya J.
        • et al.
        Maternal hair testing for the assessment of fetal exposure to drug of abuse during early pregnancy: Comparison with testing in placental and fetal remains.
        Forensic Sci Int. 2011; 218: 92-96
        • Klein C.
        • Karanges E.
        • Spiro A.
        • et al.
        Cannabidiol potentiates Δ9-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats.
        Psychopharmacology (Berl). 2011; 218: 443-457
        • Harbison R.D.
        • Mantilla-Plata B.
        Prenatal toxicity, maternal distribution and placental transfer of tetrahydrocannabinol.
        J Pharmacol Exp Ther. 1972; 180: 446-453
        • Zinchuk V.
        • Wu Y.
        • Grossenbacher-Zinchuk O.
        Bridging the gap between qualitative and quantitative colocalization results in fluorescence microscopy studies.
        Sci Rep. 2013; 3: 1-5
        • Chamson-Reig A.
        • Thyssen S.M.
        • Hill D.J.
        • Arany E.
        Exposure of the pregnant rat to low protein diet causes impaired glucose homeostasis in the young adult offspring by different mechanisms in males and females.
        Exp Biol Med (Maywood). 2009; 234: 1425-1436
        • Kalwat M.A.
        • Huang Z.
        • Wichaidit C.
        • et al.
        Isoxazole alters metabolites and gene expression, decreasing proliferation and promoting a neuroendocrine phenotype in β-cells.
        ACS Chem Biol. 2016; 11: 1128-1136
        • Hutchens T.
        • Piston D.W.
        EphA4 receptor forward signaling inhibits glucagon secretion from α-cells.
        Diabetes. 2015; 64: 3839-3851
        • Pampanini V.
        • Jahnukainen K.
        • Sahlin L.
        • Germani D.
        • Puglianiello A.
        • Cianfarani S.
        Impact of uteroplacental insufficiency on ovarian follicular pool in the rat.
        Reprod Biol Endocrinol. 2019; 17: 10
        • Hutchings D.E.
        • Martin B.R.
        • Gamagaris Z.
        • Miller T.F.
        Plasma concentrations of delta-9-tetrahydrocannabinol in dams and fetuses following acute or multiple prenatal dosing in rats.
        Life Sci. 1989; 44: 697-701
        • Kim W.
        • Doyle M.E.
        • Liu Z.
        • et al.
        Cannabinoids inhibit insulin receptor signaling in pancreatic β-cells.
        Diabetes. 2011; 60: 1198-1209
        • Kim J.
        • Lee K.J.
        • Kim J.S.
        • et al.
        Cannabinoids regulate Bcl-2 and cyclin D2 expression in pancreatic β cells.
        PLoS One. 2016; 11e0150981
        • Suárez J.
        • Baixeras E.
        Presence of functional cannabinoid receptors in human endocrine pancreas.
        Diabetologia. 2008; 51: 476-487
        • Brocato B.
        • Zoerner A.A.
        • Janjetovic Z.
        • et al.
        Endocannabinoid crosstalk between placenta and maternal fat in a baboon model (Papio spp.) of obesity.
        Placenta. 2013; 34: 983-989
        • Berrendero F.
        • Sepe N.
        • Ramos J.A.
        • Di Marzo V.
        • Fernández-Ruiz J.J.
        Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period.
        Synapse. 1999; 33: 181-191
        • Howlett A.C.
        The cannabinoid receptors.
        Prostagland Other Lipid Mediat. 2002; 68-69: 619-631
        • Silvestri C.
        • Di Marzo V.
        The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders.
        Cell Metab. 2013; 17: 475-490
        • Asadi F.
        • Dhanvantari S.
        Pathways of glucagon secretion and trafficking in the pancreatic alpha cell: Novel pathways, proteins, and targets for hyperglucagonemia.
        Front Endocrinol. 2021; 12726368
        • Ryan S.A.
        • Ammerman S.D.
        • O’Connor M.E.
        • et al.
        Marijuana use during pregnancy and breastfeeding: Implications for neonatal and childhood outcomes.
        Pediatrics. 2018; 142e20181889
        • Aung M.
        • Moh M.
        • Jung C.
        • et al.
        Association of glucagon-to-insulin ratio and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus.
        Diabetes Vasc Dis Res. 2019; 16: 186-195
        • Chauvin S.
        • Sobel A.
        Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration.
        Prog Neurobiol. 2015; 126: 1-18
        • Grenier K.
        • Ponnambalam F.
        • Lee D.
        • Lauwers R.
        • Bhalerao S.
        Cannabis in the treatment of traumatic brain injury: A primer for clinicians.
        Can J Neurol Sci. 2020; 47: 11-17
        • Kreutz S.
        • Koch M.
        • Ghadban C.
        • Korf H.W.
        • Dehghani F.
        Cannabinoids and neuronal damage: Differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures.
        Exp Neurol. 2007; 203: 246-257
        • Banjara M.
        Marijuana: Neurotoxic or neuroprotective?.
        Glob J Med Res. 2015; 15: 7-10