Advertisement

Systematic Review and Meta-analysis of Blood Glucose Response to High-intensity Interval Exercise in Adults With Type 1 Diabetes

Published:November 24, 2022DOI:https://doi.org/10.1016/j.jcjd.2022.11.006

      Abstract

      Objectives

      Exercise-induced hyperglycemia is recognized in type 1 diabetes (T1D) clinical guidelines, but its association with high-intensity intermittent exercise (HIIE) in acute studies is inconsistent. In this meta-analysis we examined the available evidence of blood glucose responses to HIIE in adults with T1D. The secondary aim was to examine predictors of blood glucose responses to HIIE. We hypothesized that there would be no consistent effect on blood glucose from HIIE, unless examined in the context of participant prandial status.

      Methods

      We conducted a literature search using keywords related to T1D and HIIE. Studies were required to include at least 6 participants with T1D with a mean age >18 years, involve an HIIE intervention and contain pre- and postexercise measures of blood glucose. Analyses of extracted data were performed using a general inverse variance statistical method with a random effects model and a weighted multiple regression.

      Results

      Nineteen interventions from 15 reports were included in the analysis. A mean overall blood glucose decrease of −1.3 mmol/L (95% confidence interval [CI], −2.3 to −0.2 mmol/L) was found during exercise, albeit with high heterogeneity (I2=84%). When performed after an overnight fast, exercise increased blood glucose by +1.7 mmol/L (95% CI, 0.4 to 3.0 mmol/L), whereas postprandial exercise decreased blood glucose by −2.1 mmol/L (95% CI, −2.8 to −1.4 mmol/L), with a statistically significant difference between groups (p<0.0001). No associations with fitness (p=0.4), sex (p=0.4), age (p=0.9), exercise duration (p=0.9) or interval duration (p=0.2) were found.

      Conclusion

      The effect of HIIE on blood glucose is inconsistent, but partially explained by prandial status.

      Résumé

      Objectifs

      Dans les lignes directrices de pratique clinique en matière de diabète de type 1 (DT1), on reconnaît l’hyperglycémie induite par l’exercice, mais son association avec l’exercice intermittent à haute intensité (EIHI) dans les études ponctuelles est incohérente. Dans la présente méta-analyse, nous avons examiné les données probantes disponibles sur les réponses de la glycémie à l’EIHI des adultes atteints du DT1. L’objectif secondaire était d’examiner les prédicteurs des réponses de la glycémie à l’EIHI. Nous avons posé l’hypothèse qu’il n’y aurait aucun effet cohérent de l’EIHI sur la glycémie, sauf s’il était étudié dans le contexte de participants en état prandial.

      Méthodes

      Nous avons réalisé une recherche bibliographique à partir des mots clés en lien avec le DT1 et l’EIHI. Les études devaient compter au moins 6 participants atteints du DT1 dont l’âge moyen était de > 18 ans, porter sur une intervention d’EIHI, et comporter des mesures de la glycémie avant et après l’exercice. Nous avons analysé les données extraites à l’aide de la méthode statistique de la variance inverse générale avec un modèle à effets aléatoires et une régression multiple pondérée.

      Résultats

      Nous avons inclus à l’analyse 19 interventions issues de 15 rapports. Nous avons observé une diminution moyenne globale de la glycémie de −1,3 mmol/L (intervalle de confiance [IC] à 95 %, de −2,3 à −0,2 mmol/L) durant l’exercice, mais une hétérogénéité élevée (I2 = 84 %). Lorsque l’exercice était pratiqué à jeun le matin, la glycémie augmentait de +1,7 mmol/L (IC à 95 %, de 0,4 à 3,0 mmol/L), alors que lorsque l’exercice était pratiqué après un repas, la glycémie diminuait de −2,1 mmol/L (IC à 95 %, de −2,8 à −1,4 mmol/L), avec une différence statistiquement significative entre les groupes (p < 0,0001). Nous n’avons observé aucune association avec la forme (p = 0,4), le sexe (p = 0,4), l’âge (p = 0,9), la durée de l’exercice (p = 0,9) ou la durée des intervalles (p = 0,2).

      Conclusion

      L’effet de l’EIHI sur la glycémie est incohérent, mais partiellement expliqué par l’état prandial.

      Keywords

      Mots clés

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Diabetes
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moy C.S.
        • Songer T.J.
        • Laporte R.E.
        • et al.
        Insulin-dependent diabetes mellitus, physical activity, and death.
        Am J Epidemiol. 1993; 137: 74-81
        • Yardley J.E.
        • Hay J.
        • Abou-Setta A.M.
        • Marks S.D.
        • McGavock J.
        A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes.
        Diabetes Res Clin Pract. 2014; 106: 393-400
        • Balducci S.
        • Iacobellis G.
        • Parisi L.
        • et al.
        Exercise training can modify the natural history of diabetic peripheral neuropathy.
        J Diabetes Complications. 2006; 20: 216-223
        • Wadén J.
        • Tikkanen H.K.
        • Forsblom C.
        • et al.
        Leisure-time physical activity and development and progression of diabetic nephropathy in type 1 diabetes: The FinnDiane Study.
        Diabetologia. 2015; l58: 929-936
        • Bohn B.
        • Herbst A.
        • Pfeifer M.
        • et al.
        Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: A cross-sectional multicenter study of 18,028 patients.
        Diabetes Care. 2015; 38: 1536-1543
        • Tikkanen-Dolenc H.
        • Waden J.
        • Forsblom C.
        • et al.
        Frequent and intensive physical activity reduces risk of cardiovascular events in type 1 diabetes.
        Diabetologia. 2017; 60: 574-580
        • Riddell M.C.
        • Gallen I.W.
        • Smart C.E.
        • et al.
        Exercise management in type 1 diabetes: A consensus statement.
        Lancet Diabetes Endocrinol. 2017; 5: 377-390
        • Al Khalifah R.A.
        • Suppere C.
        • Haidar A.
        • Rabasa-Lhoret R.
        • Ladouceur M.
        • Legault L.
        Association of aerobic fitness level with exercise-induced hypoglycaemia in Type 1 diabetes.
        Diabet Med. 2016; 33: 1686-1690
        • Yardley J.E.
        • Brockman N.K.
        • Bracken R.M.
        Could age, sex and physical fitness affect blood glucose responses to exercise in type 1 diabetes?.
        Front Endocrinol (Lausanne). 2018; 9: 674
        • Brockman N.K.
        • Sigal R.J.
        • Kenny G.P.
        • Riddell M.C.
        • Perkins B.A.
        • Yardley J.E.
        Sex-related differences in blood glucose responses to resistance exercise in adults with type 1 diabetes: A secondary data analysis.
        Can J Diabetes. 2020; 44: 267-273
        • Yardley J.E.
        Fasting may alter blood glucose responses to high-intensity interval exercise in adults with type 1 diabetes: A randomized, acute crossover study.
        Can J Diabetes. 2020; 44: 727-733
        • Toghi-Eshghi S.R.
        • Yardley J.E.
        Morning (fasting) vs afternoon resistance exercise in individuals with type 1 diabetes: A randomized crossover study.
        J Clin Endocrinol Metab. 2019; 104: 5217-5224
        • Guelfi K.
        • Jones T.
        • Fournier P.
        The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes.
        Diabetes Care. 2005; 28: 1289-1294
        • Mitchell T.H.
        • Abraham G.
        • Schiffrin A.
        • Leiter L.A.
        • Marliss E.B.
        Hyperglycemia after intense exercise in IDDM subjects during continuous subcutaneous insulin infusion.
        Diabetes Care. 1988; 11: 311-317
        • Guelfi K.
        • Jones T.
        • Fournier P.
        Intermittent high-intensity exercise does not increase the risk of early postexercise hypoglycemia in individuals with type 1 diabetes.
        Diabetes Care. 2005; 28: 416-418
        • Sigal R.J.
        • Fisher S.J.
        • Manzon A.
        • et al.
        Glucoregulation during and after intense exercise: Effects of alpha-adrenergic blockade.
        Metabolism. 2000; 49: 386-394
        • Moser O.
        • Tschakert G.
        • Mueller A.
        • et al.
        Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin.
        PLoS One. 2015; 10e0136489
        • Iscoe K.
        • Riddell M.
        Continuous moderate-intensity exercise with or without intermittent high-intensity work: Effects on acute and late glycaemia in athletes with Type 1 diabetes mellitus.
        Diabet Med. 2011; 28: 824-832
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • et al.
        PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews.
        BMJ. 2021; 372: n160
        • Green J.M.
        • Hornsby J.H.
        • Pritchett R.C.
        Lactate threshold comparison in anaerobic vs. aerobic athletes and untrained participants.
        Int J Sport Sci. 2014; 7: 4
        • Emhoff C.A.W.
        • Messonier L.A.
        • Horning M.A.
        • Fattor J.A.
        • Carlson T.J.
        • Brooks G.A.
        Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold.
        J Appl Physiol (1985). 2013; 114: 297-306
        • Zaharieva D.P.
        • Cinar A.
        • Yavelberg L.
        • Jamnik V.
        • Riddell M.C.
        No disadvantage to insulin pump off vs pump on during intermittent high-intensity exercise in adults with type 1 diabetes.
        Can J Diabetes. 2020; 44: 162-168
        • Burke J.
        • Thayer R.
        • Belcamino R.
        Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds.
        Br J Sports Med. 1994; 1: 18-21
        • Melsen W.G.
        • Bootsma M.C.J.
        • Rovers M.M.
        • Bonten M.J.M.
        The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses.
        Clin Microbiol Infect. 2014; 20: 123-129
        • Rempel M.
        • Yardley J.E.
        • McIntosh A.
        • et al.
        Vigorous intervals and hypoglycemia in type 1 diabetes: A randomized cross over trial.
        Sci Rep. 2018; 815879
        • Tonoli C.
        • Heyman E.
        • Buyse L.
        • et al.
        Neurotrophins and cognitive functions in T1D compared with healthy controls: Effects of a high-intensity exercise.
        Appl Physiol Nutr Metab. 2015; 40: 20-27
        • Harmer A.
        • Chisholm D.J.
        • McKenna M.J.
        • et al.
        High-intensity training improves plasma glucose and acid–base regulation during intermittent maximal exercise in type 1 diabetes.
        Diabetes Care. 2007; 30: 1269-1271
        • Sterne J.A.C.
        • Savovic J.
        • Page M.J.
        • et al.
        RoB 2: A revised tool for assessing risk of bias in randomised trials.
        BMJ. 2019; 366: l4898
        • McGuinness L.A.
        • Higgins J.P.T.
        Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments.
        Res Synth Methods. 2021; 12: 55-61
        • Lee A.S.
        • Way K.L.
        • Johnson N.A.
        • Twigg S.M.
        High-intensity interval exercise and hypoglycaemia minimisation in adults with type 1 diabetes: A randomised cross-over trial.
        J Diabetes Complications. 2020; 34107514
        • Campbell M.D.
        • West D.J.
        • Bain S.C.
        • et al.
        Simulated games activity vs continuous running exercise: A novel comparison of the glycemic and metabolic responses in T1DM patients.
        Scand J Med Sci Sports. 2015; 25: 216-222
        • Aronson R.
        • Brown R.E.
        • Li A.
        • Riddell M.C.
        Optimal insulin correction factor in post-high-intensity exercise hyperglycemia in adults with type 1 diabetes: The FIT study.
        Diabetes Care. 2019; 42: 10-16
        • Scott S.N.
        • Cocks M.
        • Andrews R.C.
        • et al.
        Fasted high-intensity interval and moderate-intensity exercise do not lead to detrimental 24-hour blood glucose profiles.
        J Clin Endocrinol Metab. 2019; 104: 111-117
        • Dubé J.J.
        • Broskey N.T.
        • Despines A.A.
        • et al.
        Muscle characteristics and substrate energetics in lifelong endurance athletes.
        Med Sci Sports Exerc. 2016; 48: 472-480
        • Lehmann M.
        • Keul J.
        Age-associated changes of exercise-induced plasma catecholamine responses.
        Eur J Appl Physiol Occup Physiol. 1986; 55: 302-306
        • Zebrowska A.
        • Hall B.
        • Maszczyk A.
        • Banas R.
        • Urban J.
        Brain-derived neurotrophic factor, insulin like growth factor-1 and inflammatory cytokine responses to continuous and intermittent exercise in patients with type 1 diabetes.
        Diabetes Res Clin Pract. 2018; 144: 126-136
        • Shetty V.B.
        • Fournier P.A.
        • Davey R.J.
        • et al.
        Effect of exercise intensity on glucose requirements to maintain euglycemia during exercise in type 1 diabetes.
        J Clin Endocrinol Metab. 2016; 101: 972-980
        • Sigal R.J.
        • Fisher S.
        • Halter J.B.
        • Vranic M.
        • Marliss E.B.
        The roles of catecholamines in glucoregulation in intense exercise as defined by the islet cell clamp technique.
        Diabetes. 1996; 45: 148-156
        • Yardley J.E.
        Reassessing the evidence: Prandial state dictates glycaemic responses to exercise in individuals with type 1 diabetes to a greater extent than intensity.
        Diabetologia. 2022; 65 (1994–9)
        • Dubé M.C.
        • Lavoie C.
        • Weisnagel S.J.
        Glucose or intermittent high-intensity exercise in glargine/glulisine users with T1DM.
        Med Sci Sports Exerc. 2013; 45: 3-7
        • Yardley J.E.
        • Kenny G.P.
        • Perkins B.A.
        • et al.
        Resistance versus aerobic exercise: Acute effects on glycemia in type 1 diabetes.
        Diabetes Care. 2013; 36: 537-542
        • Yamanouchi K.
        • Abe R.
        • Takeda A.
        • Atsumi Y.
        • Shichiri M.
        • Sato Y.
        The effect of walking before and after breakfast on blood glucose levels in patients with type 1 diabetes treated with intensive insulin therapy.
        Diabetes Res Clin Pract. 2002; 58: 11-18
        • Ruegemer J.J.
        • Squires R.W.
        • Marsh H.M.
        • et al.
        Differences between prebreakfast and late afternoon glycemic responses to exercise in IDDM patients.
        Diabetes Care. 1990; 13: 104-110
        • Chan S.
        • Debono M.
        Replication of cortisol circadian rhythm: New advances in hydrocortisone replacement therapy.
        Ther Adv Endocrinol Metab. 2010; 1: 129-138
        • Djurhuus C.B.
        • Gravholt C.H.
        • Nielsen S.
        • Pedersen S.B.
        • Moller N.
        • Schmitz O.
        Additive effects of cortisol and growth hormone on regional and systemic lipolysis in humans.
        Am J Physiol Endocrinol Metab. 2004; 286: E488-E494
        • Knapik J.J.
        • Meredith C.N.
        • Jones B.H.
        • Suek L.
        • Young V.R.
        • Evans W.J.
        Influence of fasting on carbohydrate and fat metabolism during rest and exercise in men.
        J Appl Physiol. 1988; 64: 1923-1929
        • Liu J.
        • Jahn L.A.
        • Fowler D.E.
        • Barrett E.J.
        • Cao W.
        • Liu Z.
        Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans.
        J Clin Endocrinol Metab. 2011; 96: 438-446
        • Møller N.
        • Jorgensen J.O.
        • Abildgard N.
        • Orskov L.
        • Schmitz O.
        • Christiansen J.S.
        Effects of growth hormone on glucose metabolism.
        Horm Res. 1991; 36: 32-35
        • Feo P.D.
        • Perriello G.
        • Torlone E.
        • et al.
        Contribution of cortisol to glucose counterregulation in humans.
        Am J Physiol Endocrinol Metab. 1989; 257: E35-42
        • Kanaley J.A.
        • Weltman J.Y.
        • Pieper K.S.
        • Weltman A.
        • Hartman M.L.
        Cortisol and growth hormone responses to exercise at different times of day.
        J Clin Endocrinol Metab. 2001; 86: 2881-2889